Type Inference for Nakano’s Modality

Abstract

Around fifteen years ago, Nakano introduced an extensiorsys-a
tem of recursive types for the Lambda Calculus consisting of
unary type constructor, anodality, guarding the occurrences of
recursive references. This modest extension afforded anfolve-
sult: the guarantee of a particular kind of termination ¢sfeally,
head normalisation). That is, programs typeable in thisesysare
guaranteed to produce output.

Since then, much research has been done to understand the s
mantics of this modality, and utilise it in more sophisteztype
systems. Notable contributions to this effort include: dark of
Birkedal et al. and Benton and Krishnaswami, who study séiman
models induced by the modality; research by Appel at al. aotd P
tier who employ the modality in typed intermediate représtons
of programs; and Atkey and McBride’s work on co-programming
for infinite data.

While some of this work explicitly addresses the possipitit
type checking(e.qg., that of Pottier), to the best of our knowledge
typeinferenceis still an unsolved problem. The lack of a type in-
ference procedure presents a significant barrier to thervaidiep-
tion of Nakano’s technique in practice. In this paper, wecdbs
a (conservative) extension to Nakano’s system which allasvio
develop a unification-based algorithm for deciding wheth&srm
is typeable by constructing a suitably general type.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guagé: Language Constructs and Features—Recursion; F.3.1
[Logics and Meanings of PrografsSpecifying and Verifying
and Reasoning about Programs—Logics of Programs, Medlanic
Verification; F.4.1 Mathematical Logic and Formal Languades
Mathematical Logic—Lambda Calculus and Related Systems

Keywords lambda calculus, approximation modality, type infer-
ence, insertion variables

1. Introduction

Type systems provide an abstract and compositional wayato re
son about the behaviour of programs [26]. Usually, one regui
that a type system is at leastund and thus captures a notion of
partial correctness for programs. Some type systems (eefe¢o
asnormalising are able to go further and guarantee total correct-
ness: not only will the program not result in an error, butilt also
eventually produce a value, i.e. terminate. These stroggaran-
tees come at a price, however—such type systems are typéaall
ther too weak, not being able to type enough programs (exgplgi

[Copyright notice will appear here once "preprint’ opti@rémoved.]

Type Inference for Nakano’s Modality — POPL 2015

typed lambda calculus [9]), or too powerful in that typegpils
undecidable (e.g. system F [14, 28], intersection typeB [30

The question of how to type recursively defined programs is
also inextricably tied up with the trade-off between pasizd total
correctness. Approaches to typing recursion may take omeamf
forms. On the one hand, recursive definitions can be allowdtka
type level [7]; on the other, constructs can be added to tiguiage
(along with appropriate typing rules) whose computatiobat
Jlaviour implements the desired recursion scheme(s).hemriase,
permitting general recursive references prevents thesyftom
differentiating between partial and total correctnessrofpams—
there must be non-terminating programs which are welldype
Fundamentally, this has to with the fact that such type syste
when viewed as logics under the Curry-Howard propositiasis-
types correspondence [16], aneonsistent

In many cases, we are happy to settle for partial correctiness
return for the ability to write typeable recursive programs nat-
ural way, however this is not an entirely satisfactory solutCon-
versely, itis possible to obtain a normalising system with typeable
recursion by placing some kind of restriction on the ocaureeof
recursive references [21], or on the structure of prograiis20].
However this is not fully satisfactory either as it eitherdes the
programmer to write code in an unnatural style, or fails t@bke
to express useful idioms. Mendler’'s well-known restrintto pos-
itive occurrences of recursive type references only [24] glkam-
ple, is incompatible with the type schemes for binary meshiod
object-orientation, and cannot deal with fixed point corakins.

In order to incorporate a simpler and more flexible form
recursive references into a consistent theory of promostas-
types, Nakano introduced a unary type construcéprglong with
the modest restriction (callgagropernesythat each recursive ref-
erence appear under the scope of this constructor [25]., Thas
type uX.(X — A) is not well-formed, whereag X.(e X — A)
is. When interpreted as a logical entity via the Curry-Haiviso-
morphism this type constructor corresponds to a modalitg, its
nature as such is elucidated by Nakano using a Kripke-sgde s
mantics. The semantics of Nakano’s modality and systenm-inc
porating it have since been studied in more detail. Birkedall.,
for instance, have studied the relationship of the mod#ditgtep-
indexed models of logical relations, and the topos of trégr-
ishnaswami and Benton [18] have also considered the rolkeof t
modality in context of reactive programming, and its unged
model of ultrametric spaces.

From a computational perspective, the consistency of Nalkan
system as a logic corresponds to the property that typeable p
gramsconverge that is, they will eventually produce a(n at least
partial) value. Combined with the fact that the system dagser
quire any syntactic restriction on terms, or on the positibrecur-
sive references in types, the utility and applicability ofikdno’s
approach is immediately obvious. This has not gone unrbtige
the research community. Appel and colleagues [2] were thetéir
use Nakano’s modality in a system for typed low level andrinte
diate languages. This has been followed up by Pottier [2#{ey
and McBride [3] and Mggelberg [23] have incorporated Nakano

of

2014/7/8

ideas into type systems for productive co-programming fire-
gramming with streams, and other infinite objects).

Despite the wide variety of systems that have been developed
so far none of them have addressed the question of autotthatica
inferring types for programs. Pottier discusses decidtslaf type
checkingfor his system, and it seems likely that the other sys-
tems admit the same result. Thus, programs in these systams c
be verified correct provided the programmer gives type anot
tions. Notwithstanding, the typeferenceparadigm offers numer-
ous benefits: it frees the programmer from the burden of lgat@n
annotate programs; it can potentially provide the programwith
more detailed information regarding errors; and it is ablait in
efficient generation of optimised code during compilati®ypstems
employing type inference, such as ML, Ocaml, and Hasked, ar
well established and make use of Hindley-Milner style typfer-
ence algorithms [10, 15, 22]. These are based on the notitypef
unification[29] and have the advantage of being intuitive and easy
to understand and implement.

We should also mention that, more or less concurrently with
the developments in Nakano-style systems, alternativedweorks
of type-based terminating systems have been developed;.gee
[4, 31]. Nakano's approach has connections with these framies
on a fundamental level, but it has clear advantages ovee thes
systems: its definition is concise and it is more intuitivedded,
Mggelberg [23] comments that (Nakano-style) guarded séonr
can be seen as a ‘lightweight’ version of sized types [4].

The aim of our work is to come to unification-based solution to
the type inference problem for Nakano’s system—so to devato
algorithm in the Hindley-Milner (HM) style (although, atisrstage,
with let-polymorphism). Extending the basic notion of ucefiion
to recursively defined types is easy: when trying to unify pety
variable ¢ with a typer in which it occurs (an ‘occurs check’),
instead of failing one constructs a substitution of the alalg
for an appropriately constructed recursive type solvirgeuation
¢ = 7. The situation is more complicated in the guarded Nakano
setting, since we have to ensure that these types satisfyroper-
ness restriction. We also find that the process of unificai@iso
more complicated since a term has, in generénaily of Nakano
types rather than a single (principal) type as in systemsnoé-u
stricted recursive types [7].

We propose an extension of Nakano’s system which allows us
to represent the family of types possessed by a term, byaitkpli
marking in types where the modality may occur. We call the
elements comprising this extensiorsertion variablessince they
allow modalities to be inserted into types. They have cotioes
with, and were in part inspired by, Kfoury and Wells’ expamsi
variables for intersection types [17]. The notion of unifica and
type inference that we develop for this extended systemtagis
and preserves this generality. Our extension is both ceates
over, and complete with respect to, Nakano's original sysfehus
our approaclis a type inference procedure for Nakano’s system.

Contributions To summarise, the contributions of this paper are:
(i) a procedure for soundly unifying recursive types witle #
modality modulo subtyping; (ii) the concept of insertiorriables

as a mechanism for indicating where in types éhmodality may
appear; and (iii) the first type inference procedure for &esyawvith

the Nakano modality. Our approach is based on unificatiomgtwh
we believe makes it intuitive and simple to understand.

We hope the approach that we demonstrate in this paper will
serve as a proof-of-concept and facilitate the developrokhtpe
inference for other, more sophisticated systems with Nedsiyple
modalities. This would, in turn, bring the obvious benefifs o
Nakano-style program verification closer to practical use.

Type Inference for Nakano’s Modality — POPL 2015

T<T T<er o(c>T)~eg —eT
oc<r o' <o <7
eog < eT c—»1<d =71

Figure 1. Subtyping for Nakano's System

Paper Outline The rest of the paper is organised as follows. In
Section 2 we review Nakano's original system. In Section 3 we
highlight some of the subtleties involved in type inferebgecon-
sidering a specific example: that of Curry’s fixed point conaidr.

We then describe how we extend Nakano'’s system by adding inse
tion variables in Section 4. Section 5 details our unifiaafooce-
dure, and we show how this enables us to infer types in Se6tion
Finally, in Section 7 we conclude and consider directiomgiufture
work.

2. Nakano's System

Nakano defined four variant type systems employingthmedality
[25]. In this section we recall one of them in particular\&:™,
since it is that system which we build on in our work. A similar
summary of this system is given in [27].

Definition 2.1 (Terms) The terms of Nakano’s system are those of
the A-calculus:

M,N =z | \a.M | MN

We write M — N for the standard notion of (multistep}-
reduction on terms.

Types are (possibly infinite) tree structures, constructsidg
the standard function (binary) type constructerand the (unary)
e modality.

Definition 2.2 (Types) Types are defined co-inductively as fol-
lows:

Tnou=p |eT|o—=>T
wherey ranges over a countably infinite set of type variables. We
useVars(7) to denote the set of type variables occurringrirand
we writee” 7 to denote the type...e 7.

n times

This definition allows for types to have arbitrary infiniteust-
ture, however we will restrict our attention to those typéhinite
or regular infinite structure. Such types can be finitely represented
using recursive type definitions. Types must additionatdljeze to
the following well-formedness condition.

Definition 2.3 (Properness)We say that a type is properiff every
infinite path throughr passes a constructor infinitely often.

When considering types using recursive definitions, thiseco
sponds to the restriction mentioned in the introductiort gvaery
recursive type reference must occur under the scope eftiedal-
ity. The following property of types is also needed.

Definition 2.4 (Finiteness) We say that a type is tail finite (or
simplyfinite) exactly when every infinite path througtenters the
domain (i.e. left-hand side) of-& constructor.

We can consider non-finite types to be equivalent to a urabers
(top) type, and so from now on we will assume the existencadi s
a (unique) type, denoted by. As shown by Nakano, it is decidable
if a type is finite or not [25]. Finite types are those tree cves
having a right-most leaf (i.e. type variable), which we wiénote
usingTail (7).

20147718

I'kaz:I'(x) T'EM:T

z:obM:71 I'tM:0—57 T'TEN:o

I'FXeM:0—>T1 I'HMN:7
o'HM: o1 FFM:U(U<T)
I'EM:T I'EM:T -

Figure 2. Type Assignment for Nakano’s System

The subtyping relation is defined as the largest relatiorypes
satisfying the rules in Figure 1. We write ~ 7 to mean that
botho < 7 andr < o. For standard recursive types (i.e. without
Nakano’s modality) it has been shown that it is decidabletivdre
two types are in the subtype relation [1, 6, 8, 11, 12], andéhe
results can straightforwardly be extended to Nakano tygee (
[27]). For space reasons we elide the details here and reder t
reader to the literature. We develop our unification procedwy
extending these same techniques, however, and so the tatazen
in Section 5 should afford a flavour of how they work.

Types are assigned to terms using the rules given in Figure 2.
As usual, type environmenismap term variables to types, and the
typing judgement’ - M : 7 says that the termM can be assigned
the typer using the type environmerit. We write - M : 7
whenT can be assigned %/ using the empty typing environment.
I, z : o stands for the type environment whéfe x : o)(y) = oif
z=yand(I',z: 0)(y) = I'(y) otherwises I" denotes the typing
environment defined by I')(x) = e 7 if and only if I'(z) = 7.

The type system satisfissibject reduction

Lemma 2.5([25, Prop. 2)) If T v M : 7 and M — N, then
I'EN:T.

More importantly, however, the system hasomvergencerop-
erty. We say that a term has a head normal form if it reduces to
(or already is) a term of the forthe: . .. 2. @M . .. M,,. Conver-
gence, then, is the following:

Theorem 2.6(Convergence [25, Thm. 2)If T' = M : 7 with 7
finite, thenM has a head normal form.

The notion of head normal form formalises the intuitive cepic
of ‘output’ for a program, and so this result is the essencthef
productivity guarantee given by the Nakano modality.

3. Motivating Insertion Variables

As stated in the introduction, our aim is to develop a HM saligo-
rithm for inference of Nakano types. In so doing, we discdhet
an extension is necessary in order to keep track of vitatinéion
characterising théamily of types that may be assigned to terms. To
do this, we propose insertion variables. These mark thditta
within types where occurrences efmay soundly be introduced.
In this respect, they are very similar to the expansion e of
Kfoury and Wells [17], which serve to mark the locations ipég
where intersections may be introduced. Note that we williaes
some familiarity on the part of the reader with the standaote-
dure for type inference in the simply typed lambda calculus.

In this section, we motivate our introduction of inserticariv
ables by considering how one might go about trying to use tde H
approach to infer a type for a particular term: Curry’s fixezinp
combinator. We will see that, at a certain point, type infierewill
‘get stuck’ due to the inability to unify two types. The caudehis
failure will be the absence of@at a crucial position in one of the
types. We will point out that it is not the case that we canrss u
the required type for the term we are building (in fact, we)c#n

Type Inference for Nakano’s Modality — POPL 2015

is simply that the unification has been too eager, in the stvage
it produces only as many occurrencesedds required for a given
unification (sub)problem even it is possible to produce mtris
here that insertion variables come to the rescue, sinceléaae
open the possibility to add more occurrences af and when they
are needed.

Consider Curry’s fixed point combinator:

Y = M.z f(zx))(Ax. f(zx))

Using a compositional approach to type inference, we start b
building types for the smaller components of terms befoenth
using these to construct the types for the larger componants
which they are a part. The basic building block¥fis the self-
applicationzz. After generating fresh typing&{z:¢1}, ¢1) and
({z:p2}, p2) for each occurrence of the term variablewe first
unify the typep: with o2 — @3 (3 fresh) so that we may type
the application. We must then unify the two resulting typeien
ronments{z:p2 — @3} and{x:p2}. Sincey, occurs in the type
w2 — 3, We must construct a recursive type as a solution and
since we are in Nakano's system this type must be proper. We
should therefore construct the substitutign — 1.6 0 — ¢3].
Applying this substitution to the two type environmentseagws
{z:(u.00 = p3) — @3} and{z:u.e0 — p3}. The latter envi-
ronment is the more specific dnand so we must use that for typ-
ing the application. Therefore, we have the following typiior
zx: ({x:u.00 — 3,3). Eliding the fine-grained steps, which
the reader may check for themselves, this leads {if:¢o3 —
pa}, (.00 — @3) — @4) as the typing fotz. f (zx).

We may now proceed to try and infer a typing for the (self)
application(Az. f(zx))(Ax.f(xzz)). Notice that the inference pro-
cedure will produce twav-equivalent but distinct (i.e. using dis-
joint sets of type variables) typings for each occurrencehef
subtermAz. f(zz): ({f:ps — @a}, (n.00 — ¢3) — 4) and
({f:p7 = @3}, (100 — p7) — s). Type inference continues
by trying to solve the following unification problem, in orde be
able to type the application (whegs is fresh):

Unify? (11.00 — ¢3) = @1, (100 = p7) = ©s) = 9

The first step is to try and unify the domains of the arrow types
However, since we are dealing with a system that incorpsisib-
typing, we must unify domains of function typesntra-variantly

in line with the definition of subtyping for function types:

Unify?
which we can try and do by unfolding the right-hand definition
Unify? (1.00 — ¢7) — ¢s, (o 1.0 — 3) — @3

Again, we proceed by trying to (contra-variantly) unify themains
of the types:

Unify?

However, now it is clear that we have a problem: due to themccu
rence ofe preceeding the left-hand recursive type, unification must
fail. There is no substitution we can apply that will unifete types
modulo the subtyping relation.

What is the cause of this failing? And indeedkig failing, since
there does exist a type for the fixed point combinator in Nal&an
system [24]. We point to the inadequacy of the typing that we
originally inferred for the subtermz. f(xx). The problem is that
that typing is not thenly one which may be assigned to this term.
For example({f:®@p7 — ¢s}, (e .00 — @7) — s) is also
a valid typing. In fact, this is exactly the typing that we dee

(n-00 = 7) = @3, u.e0 — 3

0/ .00 — p3, o0 — 7

1 Notice that the following subtyping relationship holgse 0 — 3 ~
(0.0 = @3) = @3 < (1.0 — @3) — @3

2014/7/8

use for the right-hand occurrence of the texm f(zx). If we re-
run the unification procedure using this new type, the attemilp
succeed:

1: Unify? (.00 — ¢3) — @4, (e .00 — ©7) — @5) — ¥
2 : Unify? (e u.0 0 — ¢7) — vs, u.e0 — 3

3: Unify? (e u.e0 — ¢7) — ws, (e u.e0 — ¢3) — ©3

4 : Unify? e .00 — w3, 0 1.00 — @7

Given this solution to the unification problem, we can pratee
straightforwardly to infer((, (e o9 — ©9) — 9) as a typing
for Y, which is the expected one.

Notice that there is no way of transforming (via substitnsio
and weakenings) the originally inferred typing f&¢. f(xx) into
the alternative one we have given. Something extra is reduir
We propose that this something extra is the notioringertion
variable Consider if we had been able to infer the following typing
for Az.f(zz): ({f:tps — @a}, (tpp.00 = @3) — @a). The
intention behind the entity is that it marks the place where we
can insert &, exactly as required.

In the remainder of this paper we will describe how we extend
Nakano’s system with such an entity, and how it enables us to
develop a procedure for inferring widely applicable andegah
typings for terms using Nakano types.

4. Extending the Type System

We now come to the point where we can begin describing our tech
nical contribution. In this section, we will define our exsén of
Nakano’s original system Sey™, which consists of adding inser-
tion variables into the language of types, and extendingypiry
and type assignment accordingly. Our insertion variabtesira
spired by theexpansionvariables of Kfoury and Wells [17].

We first extend the definition of types with a case for congtruc
ing types using insertion variables.

Definition 4.1 (Types with Insertion Variables)Types are defined
co-inductively as follows:

o=@ |eT | 1T |0o—>T

wherey and . range over countably infinite sets of type and in-
sertion variables respectively. We will wrifg = to denote the type
t1 ..., 7 and for a sequence of insertion variablgés= ¢1 ... tp

we write. € 7,, where there is some < k < n such that = ¢,
and write. ¢ 7,, when there is no such. We will write e for the
sequenceé, whenn = 0.

The definitions of proper and finite types transfer unchanged
from Nakano’s original system (see Section 2). Again, weyonl
consider finitely representable types. The subtypingimeidor the
extended notion of types is defined as for the original systexthe
largest relation on types satisfying the rules in Figured @eo the
additional rules given in Figure 3. The first three of the atiddes
are direct analogues for insertion variables of the comedimg
rules fore. The last two are more interesting, and say that we can
distribute and factorise insertion variables across oecues of—

(as well as) in the same way that we can for teenodality.

Extending the definition of type assignment is even more
straightforward, and needs only the following single extée,
again a direct analogue of the corresponding rule in Nalsamrig-
inal system fore.

(TEM T
I'-M:7
where. I" denotes the typing environment defined (oY) (z) =
o7 if and only if T'(z) 7. Where we want to explicitly refer

Type Inference for Nakano’s Modality — POPL 2015

oc<T

T<uT to<uT (o—=T)~1o =T

t1t2T <201 T oLT LT

Figure 3. Additional Rules for Subtyping with Insertion Variables

to type assignment in the extended system in opposition o th
original system we will writel' = M : 7, however when there
is no ambiguity we will normally use the plain turnstitefor both
systems.

Since the extended set of types and rules for subtyping and
type assignment are strict supersets of those of Nakaniggak
system, we immediately obtain the corollary that our extangs
conservativeover Nakano’s original system. That is to say, every
type that we can assign to a term in Nakano’s system we can also
assign in ours.

Theorem 4.2(Conservativity) If I' = M : 7 in Nakano’s original
system, thel® - M : 7 in our extended system.

We can also show that our extension is sound with respect to
the original system, i.e. whenever we can assign a type toraite
the extended system, then we can assign a type in the orgyisal
tem. However, in order to show this we will first need to define a
operation on types: th@sertionoperation. This operation is anal-
ogous to the familiar operation of substitution of types (type)
variables. In the case of insertions, we substitute (pbssimpty)
sequences of insertion variables and #hmodality for insertion
variables. It is the insertion operation that really chtedses the
meaning of insertion variables.

Remark Since we have defined types co-inductively, functions
on types must be defined co-recursively. However, as we con-
sider only regular (in)finite types, it suffices to define #aésnc-
tions inductively over their finite representations (seg €19]).
For ease of presentation, we will take this approach in theane-

der of the paper. Nakano’s original presentation uses timdiéa
notation of binding recursive type variables (eug{.e X — 7),
however we switch to a presentation based on de Bruijn isdice
(i.e. n.e0 — 7), ranged over byn. This is to avoid having to
deal with alpha-renaming and keeping track of equated higria
names when performing unification. Certainly from an impgem
tation point of view, this is desirable.

Before defining insertions, we first define an auxiliary ofiera
on types which inserts a into types, pushing it down until a
terminal or recursive structure is reached.

Definition 4.3 (bPush). The operatiorbPush on types is defined
as follows:

bPush(¢) = ey bPush(e7) = e (bPush(r))

bPush(n) = en bPush(:7) = ¢ (bPush(7))

bPush(c — 7) = (bPush(o)) — (bPush(r))
bPush(p.7) = e p.7

This definition can be extended to defifush[n] which insertsn
modalities into a type, withPush[0] equivalent to the identity.

It is easy to show tha&™ 7 ~ bPush[n](7).

2014/7/8

Definition 4.4 (Insertions) An insertion[¢ — 7,,e"] (wWhere
n,m > 0) is an operation on types, defined as follows:

[t = Tme"l(p) = ¢
[t = Tme"](n) =n

[t Tne”|(eT) = o ([t Tme"](T))
[t = Tne")(1.7) = p.([t = Tme"](1))
Tm (bPush[n]([t — Tme™](7)))

[t = Tme™](V' T) = if o =1

s Tme™](T) otherwise
[t Tme"](c = 7) = ([t = Tme"](c)) = ([t = Tme"](T))

If I, and I, are two insertions, then so is their compositito 7.
We extend the operation to type environments @) (z) = I(7)
if and only ifI'(z) = 7.

We give this rather esoteric definition of insertion (using
bPush), rather than the obvious straightforward one, in order for
insertions to preserveanonicalstructure of types that we will de-
fine in the next section. Working with this canonical repreadon
allows an entirely syntax-directed definition of unificatio

Insertion operations are sound with respect to subtyping.

Lemma 4.5. Let I be an insertion; iy < 7 thenI(o) < I(7).
Proof. By co-induction on the definition of subtyping. |

This leads to the main property that we desire of insertithra,
they are sound with respect to type assignment.

Theorem 4.6. If ' M : 7 thenI(T") - M : I(7).

Proof. By straightforward induction on the structure of typing
derivations; the case for subtyping follows from Lemma 4.51

This result demonstrates that insertion variables trulfjl fine
purpose for which they were introduced: that is, they mask th
places in types where themodality may be introduced. The notion
of insertion also allows us to show that our extension is dawuith
respect to Nakano’s original system.

Theorem 4.7(Soundness of the Extended Systeff)[" = M : 7
thenT” - M : o, for somel” ando.

Proof. Take the insertion/ which replaces each insertion vari-
able by the empty sequence. By Theorem 4.6 we Hg¥g .
M : I(7). Notice thatl(T") and I(7) are a type environment and
type respectively in the original system, since they do moitain
any insertion variables. It is easy to show by induction ax (e
tended) typing derivations that, if = M : 7 with T" andr a type
environment and type in the original system, thier M : 7, from
which the result follows immediately. a

Since it is easy to see that insertion operations preseriterfass
of types, the corollary of this soundness result is that atereled
type system also has the convergence property.

We conclude this section by giving a few type-theoretic itasu
for our system. The first two of these will be used to show seund
ness of the type inference procedure (Theorem 6.5, Sec}ion 6

Lemma 4.8 (Weakening) For type environments and I, write
I'" < T to mean that for alle, T'(z) = 0 = I'(z) = o’ for some
o <g;ifI'<TandT'+ M : rthenl' - M : .

Proof. By straightforward induction on the structure of derivaso
O

Let I'; andT'2 be disjoint type environments (i.dom(I'1) N
dom(T'z) = 0), and writeI'; U Iy for the type environment with
dom(I'; UT'2) = dom(I'1) U dom(I'2) satisfyingl'y (z) = 7 =
(T1Ul2)(z) =7Tandlz(z) =7 = (T'1 UT2)(z) = 7.

Type Inference for Nakano’s Modality — POPL 2015

Lemma 4.9(Degradation) LetT"; andT'; be disjoint type environ-
ments; ifly UT2 = M : 7, then both(e'1) UT2 + M : 7 and
(tT)UTl2 = M e,

Proof. By straightforward induction on typing derivations. [

Lastly, the extended system exhibits a full subject reducti
property.

Theorem 4.10(Subject Reduction)lf ' - M : mand M — N,
then' - N : 1.

Proof. By straightforward induction on the structure of derivago
The proof exactly mirrors that for Nakano's original system O

5. Unification Modulo Subtyping

This section describes the core mechanism needed by our type
inference procedure: the unification of two types. Whileftirenal
definition of our unification process is intricate, the manhnical
difficulty lies in how to show that it is a computable notioro T
do this, we build on and extend the techniques of Brandt and
Henglein [6] for deciding equality of recursive type defioiits.

We define unification using a judgemedt- o < 7, which says
that the operatior® unifies the typesr andr modulo subtyping
(i.e. O(0) < O(r)), and derive valid judgements via an inference
system. Since the inference system we defirgyigax-directedt
naturally leads to the definition of an algorithm, howeveshow
that the algorithm is terminating we need to show that thgtitesf

a derivation (if it exists) is bounded.

5.1 A Canonical Form for Types

In order to achieve a syntax-directed unification procedure
work with a canonical form of types that we now define. Eacletyp
has a canonical form to which it is equivalent (in the sensthef
equivalence induced by subtyping).

Definition 5.1 (Canonical Types) Canonical (regular) types are
defined by the following grammar:

koo B | K1 — ke (canonical types)

B = a | B (partially approximative types)
a = & | ea (fully approximative types)

£ ¢ | n | wk (exacttypes)

We note that this definition of canonicity is different to thiee
given by Nakano in [24]. The system described there Mef,
and the definition given by Nakano is appropriate to thatesyst
Our definition above is appropriate for our extension of ysem
S-heuT.

A further advantage of our definition of canonical types &tth
it affords a clean separation of tegucturalcontent of a type from
its logical content. This will allow the unification procedure to treat
the two sub-problems of structural unification and checkihigpg-
ical consistency in an orthogonal manner. The informatiocee-
sulating logical consistency is expressed in #hmodalities and
insertion variables, whereas the structural informatooantained
in the functional shape of the type, given by theand constructor
and theu, operator for recursive definition.

5.2 Operations on Types

The unification procedure will return an operation on typlest t
preserves canonicity. To that end, in addition to the opmratwe
defined in the previous section we must define two more. Thee firs
will insert insertion variables at appropriate places aditg to the
grammar just defined.

5 20147718

Definition 5.2 (iPush). The operatioriPush on types is defined as:
iPush[t](¢) =ty iPush[](eT)=1reT
iPush[¢](n) = tn iPush[](//'7) = ¢ 7
iPush[t](c — 7) = (iPush[¢](0)) — (iPush[¢](7))
iPush[¢](p.7) = t p.T

This definition is extended to sequences of insertion veasaby
iPush[2,](7) = (iPush[e1] o ... o iPush[,]) (7).

Analogously to the case ftPush (see Definition 4.3), itis easy
to show that; ..., 7 >~ iPush[Z](7).

more insertion variables. In this case, we can construatsariion
that converts the relevant insertion variables & and then we can
safely ‘close’ the recursive type by promoting the type ablé to
a recursive reference.

Definition 5.6 (Raw Type Variables) We writeRaw(7) to denote
the set of all type variables inwhich do not occur under the scope
of either an insertion variable or the type constructor.

We define the notion ofover setto be enable us to construct
proper recursive type definitions.

Definition 5.7 (Cover Set) The cover set functiofov is defined

The other operation we need is one that substitutes types for as follows:

type variables. When defining type substitutions, we wikahé¢o
ensure that the type we substituteligsed in the sense that its re-
cursive definition has no ‘free’ occurrences of recursiyeetyefer-
ences (i.e. de Bruijn indices). Although we may formally include
such open representations in the set of true types by coigide
‘free’ references to simply stand for ordinary type varéehlallow-
ing them to take place in substitutionsussoundsince they may
be ‘captured’ by recursive binders according to the deéinitbf
substitution we now give.

Definition 5.3 (Type Substitution) A (canonicalising) type sub-
stitution [— x| is an operation on types that replaces the type
variable ¢ by the (closed) canonical type and is defined by:

N JE if p=¢
[p—=kln)=n [p—k](¢)= {(p, otherwise

[p — K](eT) = bPush([p — &](T))
[= &](t7) = iPush[t]([p — &](7))
[= Kl(u-m) = p([p = K](7))
[p = k(0 = 7) = ([= &](0)) = ([p — &](7))

We collect of the operations that we have defined on types into

a single definition ofype operation

Definition 5.4 (Type Operations) A type operationO is either
a basic operation (i.e. one dfPush, iPush, an insertion, or a
type substitution), or is the composition of two type operat

Cov[g](¢") = Cov[¢](n) = Cov[p](e7) =0

{1} if ¢ € Raw(T)
Covlpl(er) = {Cov[go](T) otherwise

Cov|p](c — 7) = Covp](c) U Cov[p](T)

Cov(p](u.1) = Cov[p](T)

The cover seCov|p](7) of a typer with respect to the type
variabley is the (minimal) set of insertion variables whose conver-
sion toe ensures that the type resulting from promoting closed
(i.e. a true type).

Proposition 5.8. Let ¢ € Vars(7) \ Raw(7) and Cov[y](T) =
{t1,...,tn} and define the operatio® = [t — (1] 0
... 0[tn > tn o], thenu.([0/4](O(7))) is closed.

The last component we must define in the construction of re-
cursive type definitions is the promotion of a type variabletre-
cursive reference of the type in which it appears. For exampl
we wish to construct a recursively defined type that unifiegith
the typee o — ', then we must promote the type variakldo a
recursive referenc@® and apply theu recursion operator over the
resulting type to obtaip.e 0 — ¢'. We then build a substitution
that replaces the promoted type variable by the newly cocistd
recursive type, i.ep — .0 0 — ¢']. We will write x.([0/¢] (7))
to denote the result of promoting the type variapla = so that it
recursively references the typen which it appears. Crucially, the
following property holds of variable promotion, meaningtluch

01 002. Type operations are extended to type environments by yecursive solutions argound

O)(x) = O(r) ifand only if"(z) = 7.

The soundness results that we gave for insertions in Sedtion
extend to the larger notion of type operation.

Lemma 5.5 (Soundness of Type Operations)et O be a type
operation; then the following results hold:

1. Ifo < 7,thenO(o) < O(r).
2.fT'F M : 7,thenO(T") - M : O(7).

Proof. As a generalisation of the proof for insertions, the firstites
follows by co-induction on the definition of subtyping; arfiet
second by induction on the structure of typing derivations. [

5.3 Constructing Recursive Type Solutions

The key task of the unification procedure will be to constrectr-
sively defined types which can be used as substitutions thifit u
types modulo subtyping. Such types will need to be consduct
whenever we encounter a pair of tyges) such that is a type
variable that occurs i (or vice-versa). In the context of Nakano
types, there is the added complication of having to ens\atettte
type constructed iproper (note that it need not be finite). Since we
have insertion variables, we are afforded some flexibilityreed
not be the case that all occurrences of the type variablevftiin

the scope of @ in 7, as long as they fall under the scope of one or

Type Inference for Nakano’s Modality — POPL 2015

Proposition 5.9. 11.([0/¢](7)) =~ [¢ = p.([0/¢](7))] (7).
5.4 The Unification Procedure

We define the unification procedure itself as an inferenceerys
the derivations of which are proofs of the validity of unifice
judgementsf the formO F o < 7. The procedure arises as a proof
search algorithm, the deterministic nature of which is gitsg the
fact that the inference system is directed by the syntax pédy
thus, at each stage there is only one possible inferencéhatiavill
apply.

Definition 5.10 (Unification Inference) The inference rules for
deriving valid unification judgements are given in Figure 4.

The inference system is extensive and so we do not give an
exhaustive explanation of all the rules here. Instead, wedig-
cuss some of the most important and salient aspects. Théamota
[0 — w.7](7) which appears in many of the rules is used to indi-
cate theunfoldingof a recursive type definition (since the concept
is standard, we elide a formal definitioril denotes the identity
substitution. Additionally, apart from the (top) rule whewe ex-
plicitly state we consider theé type, we assume that all types are
not (equivalent to)r.

We note that the rules fall into two categories: logical sule
and structural rules. The logical rules produce inserti@ising

6 2014/7/8

Top Types (Structural Rule) Unifyfing Type Variables (Structural Rules)

(¢ ¢ Tandr < s) (¢ ¢ Tandr < s) (r <s)
d-F7<T LT | Fre"p<Te’p L=Te" Lo p <0 IdH-e"p < e’
(p # ¢ andr < s) (p # ¢"ands < r) (s<r)
oo e Y EeTp <oy [Pl e e p <oty [pr TIEeTp<etp

Unifying Type Variables (Logical Rules)(whereO;, = [+— €])

- 7 7 s / T s - -
OF O'(in o”¢) < O'(Vm o* ') ner£0 Obe"p<e' ' (L¢To#¢) OFep<e Y (1L¢Lp#Y)
000 Fiine o< i ey O =[] Oofts ke o< iey Oolt 7] ie"p < e
O2F e"p<0:1(Te°¢") (e orelse 02 - 0i(te"p) <o [crorelse Oz - 01(re" ¢) < O1(k1 — K2)
!

02001 10" < T \P=¢,s<T 0200 78" p<10°¢p \P=¢,T<s
Ozt 0" < O1(Tm o° ') O2 - 01(Tne) <oy
= 7 (m>0) = ;
02001 e " p< 1T @ 02001 ki, 0" p <oy

Ozooll—LZOTLpgl{l — K2

(n>0)

Constructing Standard Substitutions (Structural Rules) (where all types arelosed
(¢ ¢ Vars(k1 — k2)) (¢ ¢ Vars(k1 — k2))
[p— k1 = Kol F @ < kK1 — K2 [pr— k1 = Kol bF k1 — ke <Te

(¢ ¢ Vars(un), 7 < 5) (¢ ¢ Vars(ju), s < 7) (o ¢ Vars(ju.x). 7 < s)
[pr— o "kl Fe"p <ok [pr— okl o uk <o’y [o— pr] o pr < o p

Constructing Recursive Solutions (Structural RulesYwhere all types arelosed

¢ € Vars(k1 — k2) \ Raw(k1 — k2) ¢ € Vars(k1 — k2) \ Raw(k1 — K2)>
(o] (k1 k2) = {t1,. . tn Cov K1 K2) ={t1,--.yln
< C"—R‘ﬂ& o o;...ﬁ b) (O_[ff}EH ie] og...iunmnol
o 1(0/210(m > =00 F p <t o ra [m(0/9l(O(k1 — R2)))[0O F i1 > ha < 7o'
r <s,¢ € Vars(e’ " p.k) \ Raw(e* ™" p.x) Vars(e” 11.x) \ Raw(e" 1.k
< Cov[[gp](os_r) ={t1,...,tn}) < WCSV[S](SO(T ,u,l.jll{)):\{L? (. ,ljn}))
O=Jturrt10]0...0[tn = tn o] :L1»—>Lloo...oanb—>Lno]

[p = p.([0/€](O(e° " puki))) o O 0" < @ ki [+ p.([0/0](O(e" p.k)))] 0 O k- 0" puis < 0% p

Unifying Function Types/Recursive References (StructurbRules)

O1F k1 <k1 Ok O1(k2) < O1(kh) OFki <Ky (r<s) (s<r) (r<s)
02001 F K1 = ke < K] = KS Ok o k1 < 0° pko [Tail(p.k2) = T]F 0" pk1 < @° pkio IdFe" n<e’n
O F k1 — k2 < iPush[7](bPush[s]([0 — p.5](k))) O F iPush[Z](bPush[r]([0 — u.k](k))) < kK1 — K2
OF k1 — ko <Te° .k OF7e" u.k < k1 — Ko

General Logical Rules(where&; andé: are not both type variables)

. ’ .

P oo < Oo - 01 (7, o &) < O1 (i, 8 v # ¢ and either < s,n > 0)
OF Thas 7L:n042 (n,m > 0) 2 1(tne" &) < 1(L_»m. &2) or (s < rm > 0)
OF tlnar < timas 02001 F 1T, 0" & </, 0% & O1=[+r"1]

02 - 01(&1) < 01(&2) LgTr<s 02 F 0:1(&1) < 01(&2) LgTs<r

0200, 10" ¢ <70°¢; \O1= [Te"] 0200, F70 & <10°& \O1=[trr 707

O2 01(0"&) <01(F0°&) (1 crr<s O2 01(00"&1) <01(0°&2) [1ers<r
02001 10"& < Te° &, O1=[t—¢ 02001 H7e" & < Lo &y O1=[+ ¢

Oz F O1(Tn o"€1) < O1(e° &) n>00rs <r 02 F O1(87 €1) < 01 (Tm o° &) m>00rr < s
02001 F1ine" &1 < 0% & O1=[—d 02001 0" & < 1im & O1=[+ ¢

Figure 4. The Rules of the Unification Inference System

Type Inference for Nakano’s Modality — POPL 2015 7 2014/7/8

O3 F p.((00 — @) =) .§ eu.((00 =) >)=

03 F 03(p) < 03(¢")

0} =05005F (ep.((00 = @) =) @) > < p.((00 = 0¢) = ') = ¢

— unify components of function types

unfold left

Ol F 11.((00 = @) =) < p.((00 = 0¢') = ') = ¢

Figure 5. Initial Steps of a Non-terminating Naive Proof Search foiifidation

to unify the logical structure of the two types, as encodeth@w
modalities. Notice how an insertion variable may either liest-
tuted for some sequence of other insertion variableseamdal-
ities, or may be removed via an insertipn— ¢]. The latter takes
place when we try to unify and insertion variableith a sequence
of insertion variables in which it occurs; there is no ingertthat
can solve this — the occurs check moves from type variables to
sertion variables. Ultimately, the goal of the logical gilg to unify
as much logical information before applying a structuré ru

The structural rules compare the functional shapes of types
make sure that they are compatible. This process involviegdiing
recursive definitions at particular points, namely when veecam-
paring a top-level function type — = with a top-level recursive
definition 11.7’. As expected, when comparing two top-level func-
tion types, the domains (left-hand sides) of the two typesusi-
fied, followed by unification of the ranges (right-hand s)d&nce
we are unifying modulo subtyping, however, domains of fiorct
types are unified¢ontra-variantly The structural base cases of the
procedure are when we unify a type variablevith another type
7. In this case, a substitution @f for suitable types is gener-
ated (e.g. when the variable occurs in-, a recursive type is con-
structed as a solution). At this point, the structural raks® check
any logical constraints represented by éh@odalities that remain,
which essentially amounts to ensuring that the types in ties
mento < 7 can be made equivalent o ande® 7 wherer < s.
If this is not possible, the procedure may produce a sulbistitthat
makes the right-hand type equivalentTo

We point to an important feature of our approach: that of how
two top-level recursive definitiong. and i..o are unified. This
is achieved, not by unfolding the two definitions, butreynoving
the u-binder and unifying the two bodies of the definitiongndo.
This approach exactly mirrors that given by Cardone and Gémp
deciding equality between recursive types [8]. The notibacqual-
ity that this approach characterises, howeveryvésk(i.e. equal-
ity up to finite unfoldings of definitions). Thus, our systenayn
fail to unify some types whiclsanbe made strongly equivalent. A
simple example of this is the problem of unifyipge 0 — ¢ with
.00 — ¢ — . We will return to this point in our conclusions.

The unification inference system sesund however, as shown
by the following result.

Lemma 5.11(Soundness of Unification)if O - o < 7, thenO is
an operation and (o) < O(7).

Proof. By induction on the structure of the unification inference
derivations using the soundness of operations with regpeatb-
typing (Lemma 5.5). In the base cases where a substitutiypef
variable for a new recursive type is generated, we use Pitapos
5.9. |

Termination

In order to show that the inference system of Figure 4 givealan
gorithm, we must show that the proof search procedure textesn
This would not be the case if we naively implemented sucloespr
dure since itinvolves unfolding recursive definitions,ghecursing

Type Inference for Nakano’s Modality — POPL 2015

on larger subproblems. Consider the unification problemvsha
Figure 5, for which the first few steps are given. Incidegtahis

is another example of two types than be unified such that they
are strongly equivalent, but not such that they are weakliNstice
that after two steps, we are faced with a proof subgoal whazh h
the same structure as the original goal (modulo occurresfogsA
naive algorithm would repeat these two steps ad infinitunfiadt,
no proof exists of the validity of the desired unification gasnent,
and this is the source of the non-terminating behaviour.

To obtain a terminating algorithm, we show that when a deriva
tion proving the validity of a unification judgement exists,height
has a well-defined bound. This allows a decreasing measure to
incorporated into the proof search algorithm, thus enguténmi-
nation. The fact that the height of derivations is boundeathér
implies that the proof search algorithm is complete witlpess to
the inference system. Our technique is a direct extensicthaif
used by Brandt and Henglein [6], and later by Cardone and €opp
[8]. Fundamentally, it is based upon the fact that a reguifinite
tree (type) only has a finite number of distinct subtreesthus'the
amount of information contained in a recursive type definiisfi-
nite. Equivalently, we can observe that when unfolding recersiv
types we will only even encounter a finite (and bounded) numbe
of subcomponents. This finite set is encapsulated in themati
subterm closurén [6, 8].

We must be careful when extending the notion of subterm clo-
sure to Nakano types, however. In general, the subtermrelagfu
a (canonical) Nakano type isot finite, sincee modalities accu-
mulate as we unfold the recursive definitions. Luckily, thlouwe
may ignore the logical information encoded by the modalittae
structure of a proof in the unification inference system wated
only by thefunctional shapef types, whichis characterised by the
(finite) subterm closure.

Definition 5.12 (Structural Closure) 1. We define thestructural
representativ8truct(7) of a (Nakano) type by erasing all in-
sertion variables and occurrences of thenodality. Recursive
definitions of structural representatives can be obtainedhf
recursive definitions of types as follows:

Struct(¢) = ¢ Struct(n) =n
Struct(e 7) = Struct(¢7) = Struct(7)
Struct(oc — 7) = Struct(o) — Struct(7)
Struct(p.7) = p.(Struct(7))

2. Thestructural closuref a recursive type definition is given by:

SC(p) ={¢} SC(n) = {n}
SC(eT)=8C(v7) = S8C(7)
SC(o — 1) = {Struct(c — 1)} USC(0) U SC(7)
SC(p.1) = {Struct(u.7)} USC(7) USC([0 — p.7](7))

3. The definition of structural closure is extended to setyds
T bySC(T) = Urer(SC(7)).

8 20147718

Itis straightforward to show that the structural clos&&) of
7 is equal to the subterm closure (as defined in [6, 8Btofict(7).
Thence it follows thasSC() (and thus als&C(T")) is finite.

We must take further care however. Our termination argument
will hinge on the fact that (the structural representatife ev-
ery type occurring in a unification derivation belongs to adiy
bounded set. Since the unification procedure applies dpasato
types as it goes, it is not the case that every such entitybwiih
the structural (i.e. subterm) closure of the types in thgioal goal.
The subterm closure suffices for deciding equality betweenrr
sive types, but for unification we must find another set. Fately
such a setloesexist, and we call this set thaificationclosure.

We first define a set that combines the structural closurel of al
the recursive types that may be generated from a given typeeby
unification procedure.

Definition 5.13 (Recursion Complete Structural Closurdjhere-
cursion completstructural closure of a type is defined by:

sc(ry=scru J

oceSC(T)
o closed

U sCiw(10/¢)(0)))

@€EVars(o)

This definition is extended to sets of tydBsby SC;,(T)) =
Urer(SC; (7).
Using this, we can then define the unification closure of afset o

types, which takes into account all of the types which maithg
be generated during unification of the types in that set.

Definition 5.14 (Unification Closure) Theunification closuref a
set of typed is defined by:

UC(T) = SC(T) U

U

@€Vars(T)

U uce— (1)
TGSC;(T)
p&Vars(T)
whereVars(T') = U,erVars(7) and [¢ — 7](T") denotes the set
obtained by applying the substitutigp — 7] to each type iff".

We are interested in two key properties of the unification clo
sure: that it is finite, and that it contains all of the struatuep-
resentative of types that occur in judgements in a derinatfcthe
unification inference system.

Lemma 5.15(Finiteness and Adequacy of Unification Closure)

1. LetT be afinite set of types, théfC(T') is finite.

2. Let D be a derivation of the judgemef + o < 7, then
all statementss’ < 7’ occurring in D are such that both
Struct(c’) andStruct(7') are in the set/C({o, T}).

Proof. 1. We show the property for each closure construction
in turn. The finiteness ofSC},(r) follows from the finite-
ness ofSC(r) by induction on the number of distinct type
variables int, since the number of distinct type variables in
1.[0 — p.](7) is strictly less than in. Finiteness oSC;, (T)
for finite setsT' then follows easily by induction on the size
of T'. Finally, finiteness ot/C follows from the finiteness of
SC;,(T) by induction on the number of distinct type variables
inT

2. By straightforward induction on the structure of the datibn.

O

These properties allow us to show that the height of any deriv
tion of a unification judgemer® + o < 7 is finitely bounded, and
thus termination of the unification procedure.

Type Inference for Nakano’s Modality — POPL 2015

Theorem 5.16. LetD be a derivation of the judgeme@t ¢ < 7,
then the height oD is no greater thanUC({c, 7})|*.

Proof. We define the height o> as the maximum number of
structural rules along any path i®. The proof then proceeds
by contradiction. Assumé has a heights > |UC({o,7})*.
Then there exist derivation®1, ..., D, such that eaclD; is a
subderivation ofD, and for eachl < i # j < h, the heights
of derivationsD; andD; are different, specificalljy; = hi+1 + 1
whereh; and h;+1 are the heights oD; and D, respectively,
for eachl < ¢ < h. Also, there is a set of pairs of types
{(o1,71),..., (on,)} which are the types in the concluding
judgements of each of the derivatiaBs, . . ., Dp,.

Since the structure of derivations is syntax-directed, ae ¢
show by straightforward induction on derivations thatifo’, T
andr’ are types such th&truct(o) = Struct(o’) andStruct(r) =
Struct(7’), and D and D’ are derivations of0 + o < 7 and
O’ F o' <7’ respectively, then the heights & and D’ must
be equal.

From Lemma 5.15 we know that boliruct(o;) andStruct(7;)
are inUUC({o, 7}) for everyl < i < h. Since the number of dis-
tinct pairs (o’, ') such that bottStruct(c’) and Struct(r') are
in UC({o,7}) is |UC({o,7})|> < h, it must be that there are
two distinctj, k < h such thatStruct(c;) = Struct(ox) and
Struct(7;) = Struct(7x). Thus, by the auxiliary lemma stated
above, it must be that the heights®f andD,, are the same. How-
ever, this contradicts our earlier deduction that theights are
different. Therefore, our original assumption must haverbialse
and the height oD cannot exceetl/C({o, 7})|*. d

This argument is analogous to the one used in [8].

6. The Type Inference Procedure

Having defined a type unification procedure, we can now ptesen
our type inference procedurBype. As expected, it takes a term
M, and returns a pair consisting of a type environmérdand a
type 7 such thatr can be assigned td/ using the environment
T". Its definition is almost identical to the standard type iefee
procedure for simply typed lambda calculus, the only differe
being a subtlety in the case for typing an application in \Wwhie
must introduce insertion variables. This case of course raBkes
use of the unification procedure, which is used to both a)yunif
the type of the operator with a type constructed using thahef
operand, and b) unify the type environments inferred foherithe
components of the application. Before defining the typererfee
procedure itself, we therefore extend the notion of unifirato
type environments. We will also switch from expressing aifity

of types using judgements to writiignify% (o, 7) = O, in order

to stress that unification is@ocedure

Definition 6.1 (Unification of Type Environments)The unification
procedure is extended to type environments as follows,emvver
write () for the environment that is undefined on all variables, and
T"\ z for the environment that is defined exactly lIkeexcept onc
where it is undefined:

Unify2 (0,T") = Id
Unify2 (T, z:0), (I',2:7)) = 0200,

if Unify% (o, 7) = O1
and Unify’ (I \ z,T" \ z) = O

UnifyZ (T', z:0), (I, 2:7)) = 02001

9 2014/7/8

if Unify‘é(m 7) fails the case for an application. By the inductive hypothesis hese

and Unify% (1,0) = O typeability of the subcomponents, iB; - M : o andT's +
and Unifyﬁ (C\ z,I"\ z) = O N : 7. The soundness of unification (Lemma 5.11) giGago) <
< ’ O1(iPush[t1](T) —). Thus by soundness of operations (Lemma
Unify” (T, z:0'), T’) = Unify” (T'\ =, T 5.5), subtyping and weakening (Lemmas 6.3 and 4.8) it falow
nify< (T, 2:0), 17) = Unify< (T @, T') that O(I';) W O(T'2) F M : O(iPush[1](r)) — O(y). Notice
if z ¢ dom(I") thatT < ¢3 7 =~ iPush[e1](7). Thus by soundness of operations,

subtyping and weakening again, we h&@@';) U O(I's) F N :
O(iPush[e1](7)). Then by the typing rule for applications it follows
thatO(T"1) U O(T'2) = M N : O(). Notice thatO (T,)WO(T'2) =
Since unification (when it succeeds) does not necessarikg ma leaU %/21)30 b)(/ t2h)e degradati(of]) prgplgriy g_er(nnl\)a 4.é) 2\/%/e have
types equivalent, there is a small subtlety involved in ciorinig (12T}) UTh - MN : 12(O(¢)). Notice also thatPush[ez](T'}) ~

two environments that have been unified. When doing so, we wil ') andiPush 0 2 o) and so the final result
need to pick out the more specific type for each term variable f(cL)TIovi/)s agailn %‘; \E\L/z]agke(r(ﬁ%)g gngéut();@)gi’ng 0O
whenever there is a choice; if the two types do happen to be '

equivalent, we may pick the ‘simplest’ one. o
We do not have a completeness result for our proceduref(i.e. i

Definition 6.2 ((_:ombining Environ_ments) Let _thesizeof a type a term can be assigned a type, then our procedure also imfeys o
|7| be some suitable measure of its complexity (e.g. the maximumang we discuss this in more detail below. However, we beliest
number of nesteg-binders). We define eombiningoperationt our algorithm can infer types for a large class of terms, astime
on type environments 'y U I'2)(x) = 7 if and only if: time inferring types which are, in a sense, most generak e
1.Ti(z) =7 & = ¢ dom(T'2); or also discuss below.

2.7 = ')

3. F?Eg - : Z Iaijxd)o:(a Z,Tor< o0& o %o 6.1 Some Examples of Inferred Types
4.Ty(z)=7&Ti(z)=c & T <o&o £ 7 0or We will now demonstrate how the type inference procedureksior
5.Ti(z) =7 &Te(x)=c&7~0 & |r| < |o|;0r by considering some examples. Firstly we will revisit theitig of
6.T2(0)=7&Ti(z) =0 &T~0 & |7| < |o]; Curry’s fixed point combinator, showing how the type inferen

procedure defined above produces a typings with insertiol va
The following property, that combining unified environm@nt ables at the appropriate place as discussed in Section 3.ilWe w
produces a more specific environment, is needed to showttbat t then consider the type that the procedure infers for theli@mi-
type inference procedure we define below is sound. termS = A\zyz.xz(yz). As we proceed, we will also discuss the

Lemma 6.3. Let T; and T'> be type environments such that 9enerality of the types that are inferred.

Unify” (T'1,T'2) = O, for some operatiorO; then it holds that - . .
both (O(T1) W O(T’s)) < T'y and (O(T'y) & O(T'3)) < T's. Curry’s Fixed Point Combinator

To demonstrate how our algorithm infers a type %t we will

We can now define the type inference procedure. proceed as in Section 3 from the bottom up. The reader is eageu
Definition 6.4 (Type Inference ProcedureY he proceduréype is to compare the presentation here with the one given prelyious
defined as follows: Recall the definition of the fixed point combinator:

Type(z) = ({z:¢}, @) whereyp fresh Y = Af.(Az.f(zz))(Az. f(zz))
(T\ z,0 > 7) Similar to the standard type inference algorithm for sim-
P ply typed lambda calculus, our procedure infers vanillairtgp
Type(Az.M) = it Type(M) = (I’ z:0),7) (i.e. without any insertion variables) for term variabl&us we
(I, T =) have typing Ty = {z:p1},0 = ¢1), (I'2 = {z:p2}, 7 = 2)
; _ for the two components of the self-applicatiom. The inference
fTh M) =A(T and dom(T
it Type(M) = (I,) @ ¢ dom() of a type for the application itself, however, proceedsedéhtly.
Type(MN) = (iPush[t2](I'}) UT%, iPush[wa](O(¢))) Instead of unifyingp: with o2 — 3, our algorithm solves the

following problem:
if Type(M) = <F17U>

Type(N) = (T, 7) Unifyl 1, tip2 = w3 (1, ps fresh

UnifyZ (o, iPush[e1](7) — ¢) = O1 producing a straightforward substitutip, — t1 @2 — @3]. This

Unify% (01(T'1), 01(I'2)) = O2 substitution is then applied to the type environments nefdfor
- the subcomponents, and these are then unified. This resuhe i

wherep, ¢1, ¢2 fresh following call.

0=0500; -

I = {20 | 2 €Ty & (O(T1) UO(T2))(z) = o} Unifyc w192 = @3, @2

I, = {y:7 | y € T1 & (O(T1) WO(T2))(y) = 7} Note thatp is not under the scope ofegin the left-hand type, but

.) o) it is under the scope of an insertion variable (the relevant cester
The main result of this section is that our type inferenc@@fo is {,,}). Thus, we produce an insertién — ¢, o] to ensure that

dure issound the ensuing recursive type we construct is proper, and gentite
Theorem 6.5 (Soundness of Type Inference)f Type(M) = substitutionps — 1.1 ¢ 0 — (3]. Applying the substitutions and
(T,7)thenl - M : 7. insertion generated so far to the type environments, we get

. . o) = {«: . 0— —
Proof. By induction on the structure of terms. The cases when (T) = {za op(r e 3) = s}

the term is a variable or an abstraction are trivial. We discu O(I'2) = {z:p.(t100 — @3)}

Type Inference for Nakano’s Modality — POPL 2015 10 2014/7/8

where

O =[p2+> p.t100 — s3]0
[t1 > L1 0] 01 — L1 2 — 3]

Notice that the two types fox are equivalent(~), which was
not the case for the type inference procedure without iwsert
variables. When combining the environments, we can thdathi
simpler one, to ge®(I'1) U O(I'2) = {x:pu.(t1 00 — 3)}.

We now split the environment into two disjoint environments
according to the which variables occurred in each of the taroc
ponents of the application, and add an extra insertion lvkrito
the types of those variables from the left-hand componente$
in this case there are no variables from the right-hand cempo
nent which do not also occur in the left-hand one, Byrand I,
from the definition of the type inference algorithm (Def. oade
{z:u.(11 00 — ¢3)} and(respectively. Thus, we obtain the fol-
lowing typing forzz: ({z:t2 p.(t1 00 — @3)}, 12 03).

A similar procedure then takes place to infer a typing for the
term f(xzx), and the reader can easily verify that the typing gener-
ated forAz. f (zz) is the following one:

(fitatstz s = taps, tap.(t100 = p3) — Laps)

Notice that both of the typings we gave in Section 3 can be gen-
erated from this one by different combinations of insertioRor
example, the operation that sends each of. . , 15 to € will pro-
duce the original typing we considered, and the operatiatstbnds
L1,L3,...,t5 10 € andiz to e will yield the alternative typing. We
conjecture thatiny and allthe typings of this term in Nakano’s
original system can be generated from the one returned bgleur
gorithm using type operations and weakening. This wouldmmea
that our algorithm infergrincipal typings, although since our al-
gorithm only unifies up to weak equality it seems clear thpirtgs
would only be principal up to weak equality.

At this point we arrive to where we ran into trouble previgusl
remember that type inference without insertion variakééed be-
cause we could not unify the types inferred for the two o@nces
of the subtermAz.f(xzx). Having inferred a typing with inser-
tion variables, however, the unification succeeds. Takirfgesh
instance for the right-hand occurrence of the subterm, veimb

(T1,0) = { fitatz iz o3 — L4 ps,
top.(t100 = p3) = Laps)

(T2, 7) = (figtr L6 ps = Lg P10,
te p-(t5 00 — @g) — L8 Y10)

The unification then proceeds as follows. We show the stepie up
the point at which the approach without insertion variabieks.
This step is now easily handled because the insertion \arigh
prefixing the right-hand recursive type is able to ‘consuthe’e
prefixing the left-hand recursive type:

UnifyZ o, iPush[io](7) — ¢11
= UnifyL 12 p0.(t1 00 — 3) — 14 05,
(Lg Le ,LJ,.(L5 o0 — gog) —> L9 L8 Lpl()) — P11
As before, we contra-variantly unify the domains of the g/pe

Unify% 19 16 p.(t5 00 — s) — Lo ts P10,
t2 (1100 = p3)
which requires us to unfold the right-hand type:

Unify 106 (1500 — @s) — 19 ts P10,
tat1op.(t100 = p3) = 123

Type Inference for Nakano’s Modality — POPL 2015

Again, we must contra-variantly unify the domains:
Unify‘é tot10p.(t100 — ©3) , Loie p-(t5 00 — ©s)

We then pair off the insertion variablesand.g at the head of each
type (an instance of a logical rule), and continue:

Unifyl c1ep.(t100 = ¢3) , t61.(t500 — p3)

This is now the point at which type inference without ingenti
variables gets stuck. Here, however, notice that we cary uhé

insertion variables with the sequence; e that prefixes the left-
hand type and continue:

Unify fi.(c100 — 3) , p.(t5 00 — @s)

We do not show the remaining steps of the unification, howtheer
reader may verify that it succeeds and results in the foligvtype
for the'Y combinator:

(/" ep—1p)—=1p

The S Combinator

As a further example. consider the combindioe= Azyz.xz(yz).
The reader may like to verify as an exercise that our algorith
produces the following type for this term:

(L5 L1 1 —> L5 L4 L3 P2 —> L5 §03)
— (L3L2s01 — L3<,02) — L5 P1 — L5 P3

Notice, again, that by sending each insertion variable. ., s

to e we obtain the standard Curry (principal) type fr We can
generate other types f& by applying simple insertions that send
each insertion variable te or e. Each the following types are
obtainable in this way:

(001 = w2 = @3) = (1 = 2) = 1 = 3

(o1 — @02 = 3) = (1 = 2) = 1 = 3

(o1 — @02 — 3) = (001 — p2) = Y1 — 3
(001 — 0 p2 = 0p3) = (p1 —> P2) —> @1 —> @3

This result further bolsters our principality conjectulteis easily
verified that the four types we have just given, along with the
familiar Curry type, arenot related to one another via subtyping,
i.e. they reside in the same generation in the subtypingapart
order. Neither can any of them be obtained from the Curry type
via substitution. However, they are all obtainable from tihee
returned by our inference procedure via operations (iitses} on
that type!

6.2 Some Comments on Completeness

We have pointed out that because our unification procedieaés
the variant of equality-checking technique that tests feakvequal-
ity (i.e. up to finite unfoldings) of recursive definitionsither than
strong equality. This means that there are types, that afiahle
under a strong notion of equality, which our procedure cannify.
We have given examples of two such pairs of types in Sectibn 5.

It is unclear to us, at this time, whether and exactly how our
techniqgue may be extended to such a strong notion of uniitati
In the algorithm for checking strong equality of type definis,
proof goals (in the form of statements of equality betweercfion
types) are collected as the procedure progresses; thed iffaen
the same proof goal is encountered again, the equality may be
assumed as an axiom. Using this approach does not seemlpossib
for unification, which must produce a substitution: sincedwenot
what the correct substitution should be on first encoungetire
subgoal, what should be returned when the subgoal is ereraaht
for the second time?

11 2014/7/8

Notwithstanding, it remains to be seen whether this is i dac
significant problem for type inference. Is it the case thatalgo-
rithm, when trying to type an application, would actuallpguce
two types which could only be unified such that they are stsong
equivalent but not weakly so? We have not been able to think of
an example demonstrating this up till now—such an exampie, i
exists, would certainly be interesting to consider.

More of a problem for completeness is the fact that we do not
have a rule in our system that unifiessgrefixed type variable
with a function type (i.eO» - e < o — 7). There are simple
examples that this is incomplete. Taker and e’ — e/,
which are clearly unifiable with the substitutidp — ¢’ —
¢']. The fact that our procedure does not do this is an artefact
of the definition of canonical form that we have used: we must
pushe modalities innermost. A straightforward example of where
this causes type inference to fail is with the tebi{\zy.y(zy))
(also a fixed point combinator). Perhaps this can be overdpme
some ‘pulling’ operation, that can factorise occurrences ¢and
insertion variables) out of a function type. This is a quastior
future research.

7. Conclusions and Future Work

We have presented an extension of Nakano's original sysfem o
guarded recursive types that consists of insertion vargla kind
of type constructor. On an operational level, these inserari-
ables serve to allow occurrences of shmodality to be introduced
at specific points within types. We have extended the typigmass
ment system so that types with insertion variables can higrees
to terms. When such a type can be assigned to a termsdusd
to introduce occurrences efat those locations in the type marked
by an insertion variable. This means that they can actuelye-
sent families of guarded types that may be assigned to tenos,T
insertion variables armorethan just an operational device; they
constitute an added level of abstraction on top of the raveephn
of the e modality.

We have also described a method for unifying two types in our
extended system, modulo the subtyping relation, and we insee
this unification procedure to define a type inference algoritin
order to develop the unification procedure, we built upon exd
tended techniques which have previously only been used to de
cide equality between recursive type definitions. This ived con-
structing a generalisation of the notion of subterm closunéch
is appropriate for unification. We showed our type inferealcm-
rithm to be sound, and we demonstrated its operation uspigaly
and illuminating examples.

There are many potential avenues for future work. Regarding
the system that we have presented, it would be interesting-to
vestigate to what extent principality of typings holds, avitether
our inference algorithm does in fact construct them. Thera@so
the question of extending the notion of unification to gaimeo
pleteness. Beyond that, it would also be elucidating toanese
the underlying semantic model of insertion variables, asdaver
whether there really is a deeper connection with expansiii v
ables. In terms of applying our results, the obvious quaestio
whether our techniques can be applied to those systemslakiea
fined that make use of Nakano modalities. Beyond that, ancappl
tion mentioned by Nakano himself is the object-orientechgamym.
Recursive types are the natural descriptions of objectd,sanit
seems likely that applying guarded recursion in this sgttwould
bring great rewards.

References

[1] R. M. Amadio and L. Cardelli. Subtyping Recursive Type&CM
Trans. Program. Lang. Systl5(4):575-631, 1993.

Type Inference for Nakano’s Modality — POPL 2015

[2] A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vooifi. A Very
Modal Model of a Modern, Major, General Type System.POPL,
pages 109-122, 2007.

[3] R. Atkey and C. McBride. Productive Coprogramming withi@ded
Recursion. INCFP, pages 197-208, 2013.

[4] G. Barthe, B. Grégoire, and C. Riba. Type-Based Tertionawith
Sized Products. I€SL, pages 493-507, 2008.

[5] L. Birkedal, R. E. Mggelberg, J. Schwinghammer, and Kzav&ing.
First Steps in Synthetic Guarded Domain Theory: Step-limdeix the
Topos of TreesLogical Methods in Computer Scien@4), 2012.

[6] M. Brandt and F. Henglein. Coinductive AxiomatizatiohRecursive
Type Equality and Subtypindgzundam. Inform.33(4):309—-338, 1998.

[7] F. Cardone and M. Coppo. Type Inference with Recursiv@eby
Syntax and Semanticsinformation and Computatiqr92(1):48-80,
1991.

[8] F. Cardone and M. Coppo. Decidability Properties of Reive Types.
In ICTCS pages 242-255, 2003.

[9] H. B. Curry and R. Feys.Combinatory Logic volume 1. North-
Holland, Amsterdam, 1958.

[10] L. Damas and R. Milner. Principal type-schemes for fioral pro-
grams. InPOPL, pages 207-212, 1982.

[11] J. Endrullis, C. Grabmayer, J. W. Klop, and V. van Oostré@n Equal
u-terms. Theor. Comput. Sgi412(28):3175-3202, 2011.

[12] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive $pbtg
RevealedJ. Funct. Program.12(6):511-548, 2002.

[13] E. Giménez. Structural Recursive Definitions in Typeedry.
ICALP, pages 397-408, 1998.

[14] J. Y. Girard. Interprtation fonctionnelle et limination des coupures de
I'arithmtique d’ordre suprieur PhD thesis, Universit Paris VII, 1972.

[15] R. Hindley. The Principal Type-Scheme of an Object imm@inatory
Logic. Transactions of the American Mathematical Sociéd#6:pp.
29-60, 1969.

[16] W. A. Howard. The Formulas-as-Types Notion of Constinrc

[17] A. J. Kfoury and J. B. Wells. Principality and Type Inéerce for
Intersection Types Using Expansion Variabl&@heor. Comput. Sgi.
311(1-3):1-70, 2004.

[18] N. R. Krishnaswami and N. Benton. Ultrametric Semant€ Reac-
tive Programs. ILICS, pages 257—-266, 2011.

[19] J. Matthews. Recursive Function Definition over Coictilte Types.
In TPHOLS pages 73-90, 1999.

[20] D. A. McAllester and K. Arkoudas. Walther Recursion. QADE,
pages 643-657, 1996.

[21] N. Mendler. Recursive Types and Type Constraints inoBddOrder
Lambda Calculus. 1hICS, pages 30-36. IEEE, 1987.

[22] R. Milner. A theory of type polymorphism in programmingJ.
Comput. Syst. S¢il7(3):348-375, 1978.

[23] R. E. Mggelberg. A Type Theory for Productive Coprognaimg Via
Guarded Recursion. I8SL-LICS 2014.

[24] H. Nakano. A Modality for Recursion. IbICS pages 255-266, 2000.

[25] H. Nakano. Fixed-Point Logic with the Approximation Mality and
its Kripke Completeness. MACS pages 165-182, 2001.

[26] B. C. Pierce.Types and programming languagedIT Press, 2002.

[27] F. Pottier. A Typed Store-passing Translation for GahReferences.
In POPL, pages 147-158, 2011.

[28] J. C. Reynolds. Towards a theory of type structureSymposium on
Programming pages 408-423, 1974.

[29] J. A. Robinson. A Machine-Oriented Logic Based on thedRetion
Principle. J. ACM 12(1):23-41, 1965.

[30] S.van Bakel. Strict Intersection Types for the LambaécGlus.ACM
Comput. Sury.43(3):20, 2011.

[31] H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatypes€uc-
tors. INPOPL, pages 224-235, 2003.

In

12 20147718

