
Type Inference for Nakano’s Modality

Abstract
Around fifteen years ago, Nakano introduced an extension to asys-
tem of recursive types for the Lambda Calculus consisting ofa
unary type constructor, ormodality, guarding the occurrences of
recursive references. This modest extension afforded a powerful re-
sult: the guarantee of a particular kind of termination (specifically,
head normalisation). That is, programs typeable in this system are
guaranteed to produce output.

Since then, much research has been done to understand the se-
mantics of this modality, and utilise it in more sophisticated type
systems. Notable contributions to this effort include: thework of
Birkedal et al. and Benton and Krishnaswami, who study semantic
models induced by the modality; research by Appel at al. and Pot-
tier who employ the modality in typed intermediate representations
of programs; and Atkey and McBride’s work on co-programming
for infinite data.

While some of this work explicitly addresses the possibility of
type checking(e.g., that of Pottier), to the best of our knowledge
type inferenceis still an unsolved problem. The lack of a type in-
ference procedure presents a significant barrier to the wider adop-
tion of Nakano’s technique in practice. In this paper, we describe
a (conservative) extension to Nakano’s system which allowsus to
develop a unification-based algorithm for deciding whethera term
is typeable by constructing a suitably general type.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage]: Language Constructs and Features—Recursion; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Logics of Programs, Mechanical
Verification; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda Calculus and Related Systems

Keywords lambda calculus, approximation modality, type infer-
ence, insertion variables

1. Introduction
Type systems provide an abstract and compositional way to rea-
son about the behaviour of programs [26]. Usually, one requires
that a type system is at leastsound, and thus captures a notion of
partial correctness for programs. Some type systems (referred to
asnormalising) are able to go further and guarantee total correct-
ness: not only will the program not result in an error, but it will also
eventually produce a value, i.e. terminate. These strongerguaran-
tees come at a price, however—such type systems are typically ei-
ther too weak, not being able to type enough programs (e.g. simply

[Copyright notice will appear here once ’preprint’ option is removed.]

typed lambda calculus [9]), or too powerful in that typeability is
undecidable (e.g. system F [14, 28], intersection types [30]).

The question of how to type recursively defined programs is
also inextricably tied up with the trade-off between partial and total
correctness. Approaches to typing recursion may take one oftwo
forms. On the one hand, recursive definitions can be allowed at the
type level [7]; on the other, constructs can be added to the language
(along with appropriate typing rules) whose computationalbe-
haviour implements the desired recursion scheme(s). In either case,
permitting general recursive references prevents the system from
differentiating between partial and total correctness of programs—
there must be non-terminating programs which are well-typed.
Fundamentally, this has to with the fact that such type systems,
when viewed as logics under the Curry-Howard propositions-as-
types correspondence [16], areinconsistent.

In many cases, we are happy to settle for partial correctnessin
return for the ability to write typeable recursive programsin a nat-
ural way, however this is not an entirely satisfactory solution. Con-
versely, itis possible to obtain a normalising system with typeable
recursion by placing some kind of restriction on the occurrence of
recursive references [21], or on the structure of programs [13, 20].
However this is not fully satisfactory either as it either forces the
programmer to write code in an unnatural style, or fails to beable
to express useful idioms. Mendler’s well-known restriction to pos-
itive occurrences of recursive type references only [21], for exam-
ple, is incompatible with the type schemes for binary methods in
object-orientation, and cannot deal with fixed point combinators.

In order to incorporate a simpler and more flexible form of
recursive references into a consistent theory of propositions-as-
types, Nakano introduced a unary type constructor (•), along with
the modest restriction (calledproperness) that each recursive ref-
erence appear under the scope of this constructor [25]. Thus, the
typeµX.(X → A) is not well-formed, whereasµX.(•X → A)
is. When interpreted as a logical entity via the Curry-Howard iso-
morphism this type constructor corresponds to a modality, and its
nature as such is elucidated by Nakano using a Kripke-style se-
mantics. The semantics of Nakano’s modality and systems incor-
porating it have since been studied in more detail. Birkedalet al.,
for instance, have studied the relationship of the modalityto step-
indexed models of logical relations, and the topos of trees [5]. Kr-
ishnaswami and Benton [18] have also considered the role of the
modality in context of reactive programming, and its underlying
model of ultrametric spaces.

From a computational perspective, the consistency of Nakano’s
system as a logic corresponds to the property that typeable pro-
gramsconverge; that is, they will eventually produce a(n at least
partial) value. Combined with the fact that the system does not re-
quire any syntactic restriction on terms, or on the positionof recur-
sive references in types, the utility and applicability of Nakano’s
approach is immediately obvious. This has not gone unnoticed by
the research community. Appel and colleagues [2] were the first to
use Nakano’s modality in a system for typed low level and interme-
diate languages. This has been followed up by Pottier [27]. Atkey
and McBride [3] and Møgelberg [23] have incorporated Nakano’s

Type Inference for Nakano’s Modality – POPL 2015 1 2014/7/8

ideas into type systems for productive co-programming (i.e. pro-
gramming with streams, and other infinite objects).

Despite the wide variety of systems that have been developed,
so far none of them have addressed the question of automatically
inferring types for programs. Pottier discusses decidability of type
checkingfor his system, and it seems likely that the other sys-
tems admit the same result. Thus, programs in these systems can
be verified correct provided the programmer gives type annota-
tions. Notwithstanding, the typeinferenceparadigm offers numer-
ous benefits: it frees the programmer from the burden of having to
annotate programs; it can potentially provide the programmer with
more detailed information regarding errors; and it is able to aid in
efficient generation of optimised code during compilation.Systems
employing type inference, such as ML, Ocaml, and Haskell, are
well established and make use of Hindley-Milner style type infer-
ence algorithms [10, 15, 22]. These are based on the notion oftype
unification[29] and have the advantage of being intuitive and easy
to understand and implement.

We should also mention that, more or less concurrently with
the developments in Nakano-style systems, alternative frameworks
of type-based terminating systems have been developed, seee.g.
[4, 31]. Nakano’s approach has connections with these frameworks
on a fundamental level, but it has clear advantages over these
systems: its definition is concise and it is more intuitive. Indeed,
Møgelberg [23] comments that (Nakano-style) guarded recursion
can be seen as a ‘lightweight’ version of sized types [4].

The aim of our work is to come to unification-based solution to
the type inference problem for Nakano’s system—so to develop an
algorithm in the Hindley-Milner (HM) style (although, at this stage,
with let-polymorphism). Extending the basic notion of unification
to recursively defined types is easy: when trying to unify a type
variableϕ with a typeτ in which it occurs (an ‘occurs check’),
instead of failing one constructs a substitution of the variableϕ
for an appropriately constructed recursive type solving the equation
ϕ = τ . The situation is more complicated in the guarded Nakano
setting, since we have to ensure that these types satisfy theproper-
ness restriction. We also find that the process of unificationis also
more complicated since a term has, in general, afamily of Nakano
types rather than a single (principal) type as in systems of unre-
stricted recursive types [7].

We propose an extension of Nakano’s system which allows us
to represent the family of types possessed by a term, by explicitly
marking in types where the• modality may occur. We call the
elements comprising this extensioninsertion variables, since they
allow modalities to be inserted into types. They have connections
with, and were in part inspired by, Kfoury and Wells’ expansion
variables for intersection types [17]. The notion of unification and
type inference that we develop for this extended system constructs
and preserves this generality. Our extension is both conservative
over, and complete with respect to, Nakano’s original system. Thus
our approachis a type inference procedure for Nakano’s system.

Contributions To summarise, the contributions of this paper are:
(i) a procedure for soundly unifying recursive types with the •
modality modulo subtyping; (ii) the concept of insertion variables
as a mechanism for indicating where in types the• modality may
appear; and (iii) the first type inference procedure for a system with
the Nakano modality. Our approach is based on unification, which
we believe makes it intuitive and simple to understand.

We hope the approach that we demonstrate in this paper will
serve as a proof-of-concept and facilitate the developmentof type
inference for other, more sophisticated systems with Nakano-style
modalities. This would, in turn, bring the obvious benefits of
Nakano-style program verification closer to practical use.

τ ≤ ⊤ τ ≤ • τ •(σ → τ) ≃ •σ → • τ

σ ≤ τ

•σ ≤ • τ

σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

Figure 1. Subtyping for Nakano’s System

Paper Outline The rest of the paper is organised as follows. In
Section 2 we review Nakano’s original system. In Section 3 we
highlight some of the subtleties involved in type inferenceby con-
sidering a specific example: that of Curry’s fixed point combinator.
We then describe how we extend Nakano’s system by adding inser-
tion variables in Section 4. Section 5 details our unification proce-
dure, and we show how this enables us to infer types in Section6.
Finally, in Section 7 we conclude and consider directions for future
work.

2. Nakano’s System
Nakano defined four variant type systems employing the• modality
[25]. In this section we recall one of them in particular, S-λ•µ+,
since it is that system which we build on in our work. A similar
summary of this system is given in [27].

Definition 2.1 (Terms). The terms of Nakano’s system are those of
theλ-calculus:

M,N ::= x | λx.M | MN

We writeM → N for the standard notion of (multistep)β-
reduction on terms.

Types are (possibly infinite) tree structures, constructedusing
the standard function (binary) type constructor→ and the (unary)
• modality.

Definition 2.2 (Types). Types are defined co-inductively as fol-
lows:

τ, σ ::= ϕ | • τ | σ → τ

whereϕ ranges over a countably infinite set of type variables. We
useVars(τ) to denote the set of type variables occurring inτ , and
we write•nτ to denote the type• . . . •

︸ ︷︷ ︸
n times

τ .

This definition allows for types to have arbitrary infinite struc-
ture, however we will restrict our attention to those types with finite
or regular infinite structure. Such types can be finitely represented
using recursive type definitions. Types must additionally adhere to
the following well-formedness condition.

Definition 2.3 (Properness). We say that a typeτ is properiff every
infinite path throughτ passes a• constructor infinitely often.

When considering types using recursive definitions, this corre-
sponds to the restriction mentioned in the introduction that every
recursive type reference must occur under the scope of the• modal-
ity. The following property of types is also needed.

Definition 2.4 (Finiteness). We say that a typeτ is tail finite (or
simplyfinite) exactly when every infinite path throughτ enters the
domain (i.e. left-hand side) of a→ constructor.

We can consider non-finite types to be equivalent to a universal
(top) type, and so from now on we will assume the existence of such
a (unique) type, denoted by⊤. As shown by Nakano, it is decidable
if a type is finite or not [25]. Finite types are those tree structures
having a right-most leaf (i.e. type variable), which we willdenote
usingTail(τ).

Type Inference for Nakano’s Modality – POPL 2015 2 2014/7/8

Γ ⊢ x : Γ(x) Γ ⊢ M : ⊤

Γ, x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

•Γ ⊢ M : • τ
Γ ⊢ M : τ

Γ ⊢ M : σ
Γ ⊢ M : τ

(σ ≤ τ)

Figure 2. Type Assignment for Nakano’s System

The subtyping relation is defined as the largest relation on types
satisfying the rules in Figure 1. We writeσ ≃ τ to mean that
bothσ ≤ τ andτ ≤ σ. For standard recursive types (i.e. without
Nakano’s modality) it has been shown that it is decidable whether
two types are in the subtype relation [1, 6, 8, 11, 12], and these
results can straightforwardly be extended to Nakano types (see
[27]). For space reasons we elide the details here and refer the
reader to the literature. We develop our unification procedure by
extending these same techniques, however, and so the presentation
in Section 5 should afford a flavour of how they work.

Types are assigned to terms using the rules given in Figure 2.
As usual, type environmentsΓ map term variables to types, and the
typing judgementΓ ⊢ M : τ says that the termM can be assigned
the typeτ using the type environmentΓ. We write ⊢ M : τ
whenτ can be assigned toM using the empty typing environment.
Γ, x : σ stands for the type environment where(Γ, x : σ)(y) = σ if
x = y and(Γ, x : σ)(y) = Γ(y) otherwise.•Γ denotes the typing
environment defined by(•Γ)(x) = • τ if and only ifΓ(x) = τ .

The type system satisfiessubject reduction:

Lemma 2.5 ([25, Prop. 2]). If Γ ⊢ M : τ andM → N , then
Γ ⊢ N : τ .

More importantly, however, the system has aconvergenceprop-
erty. We say that a term has a head normal form if it reduces to
(or already is) a term of the formλx1 . . . xn.xM1 . . .Mn. Conver-
gence, then, is the following:

Theorem 2.6(Convergence [25, Thm. 2]). If Γ ⊢ M : τ with τ
finite, thenM has a head normal form.

The notion of head normal form formalises the intuitive concept
of ‘output’ for a program, and so this result is the essence ofthe
productivity guarantee given by the Nakano modality.

3. Motivating Insertion Variables
As stated in the introduction, our aim is to develop a HM stylealgo-
rithm for inference of Nakano types. In so doing, we discoverthat
an extension is necessary in order to keep track of vital information
characterising thefamilyof types that may be assigned to terms. To
do this, we propose insertion variables. These mark the locations
within types where occurrences of• may soundly be introduced.
In this respect, they are very similar to the expansion variables of
Kfoury and Wells [17], which serve to mark the locations in types
where intersections may be introduced. Note that we will assume
some familiarity on the part of the reader with the standard proce-
dure for type inference in the simply typed lambda calculus.

In this section, we motivate our introduction of insertion vari-
ables by considering how one might go about trying to use the HM
approach to infer a type for a particular term: Curry’s fixed point
combinator. We will see that, at a certain point, type inference will
’get stuck’ due to the inability to unify two types. The causeof this
failure will be the absence of a• at a crucial position in one of the
types. We will point out that it is not the case that we cannot use
the required type for the term we are building (in fact, we can). It

is simply that the unification has been too eager, in the sensethat
it produces only as many occurrences of• as required for a given
unification (sub)problem even it is possible to produce more. It is
here that insertion variables come to the rescue, since theyleave
open the possibility to add more occurrences of• as and when they
are needed.

Consider Curry’s fixed point combinator:

Y = λf.(λx.f(xx))(λx.f(xx))

Using a compositional approach to type inference, we start by
building types for the smaller components of terms before then
using these to construct the types for the larger componentsof
which they are a part. The basic building block ofY is the self-
applicationxx. After generating fresh typings〈 {x:ϕ1}, ϕ1 〉 and
〈 {x:ϕ2}, ϕ2 〉 for each occurrence of the term variablex, we first
unify the typeϕ1 with ϕ2 → ϕ3 (ϕ3 fresh) so that we may type
the application. We must then unify the two resulting type envi-
ronments{x:ϕ2 → ϕ3} and{x:ϕ2}. Sinceϕ2 occurs in the type
ϕ2 → ϕ3, we must construct a recursive type as a solution and
since we are in Nakano’s system this type must be proper. We
should therefore construct the substitution[ϕ2 7→ µ.• 0 → ϕ3].
Applying this substitution to the two type environments gives us
{x:(µ.• 0 → ϕ3) → ϕ3} and{x:µ.•0 → ϕ3}. The latter envi-
ronment is the more specific one1 and so we must use that for typ-
ing the application. Therefore, we have the following typing for
xx: 〈 {x:µ.•0 → ϕ3, ϕ3 〉. Eliding the fine-grained steps, which
the reader may check for themselves, this leads to〈 {f :ϕ3 →
ϕ4}, (µ.• 0 → ϕ3) → ϕ4 〉 as the typing forλx.f(xx).

We may now proceed to try and infer a typing for the (self)
application(λx.f(xx))(λx.f(xx)). Notice that the inference pro-
cedure will produce twoα-equivalent but distinct (i.e. using dis-
joint sets of type variables) typings for each occurrence ofthe
subtermλx.f(xx): 〈 {f :ϕ3 → ϕ4}, (µ.•0 → ϕ3) → ϕ4 〉 and
〈 {f :ϕ7 → ϕ8}, (µ.• 0 → ϕ7) → ϕ8 〉. Type inference continues
by trying to solve the following unification problem, in order to be
able to type the application (whereϕ9 is fresh):

Unify? (µ.• 0 → ϕ3) → ϕ4 , ((µ.• 0 → ϕ7) → ϕ8) → ϕ9

The first step is to try and unify the domains of the arrow types.
However, since we are dealing with a system that incorporates sub-
typing, we must unify domains of function typescontra-variantly,
in line with the definition of subtyping for function types:

Unify? (µ.• 0 → ϕ7) → ϕ8 , µ.• 0 → ϕ3

which we can try and do by unfolding the right-hand definition:

Unify? (µ.•0 → ϕ7) → ϕ8 , (•µ.• 0 → ϕ3) → ϕ3

Again, we proceed by trying to (contra-variantly) unify thedomains
of the types:

Unify? •µ.• 0 → ϕ3 , µ.• 0 → ϕ7

However, now it is clear that we have a problem: due to the occur-
rence of• preceeding the left-hand recursive type, unification must
fail. There is no substitution we can apply that will unify these types
modulo the subtyping relation.

What is the cause of this failing? And indeed itis a failing, since
there does exist a type for the fixed point combinator in Nakano’s
system [24]. We point to the inadequacy of the typing that we
originally inferred for the subtermλx.f(xx). The problem is that
that typing is not theonly one which may be assigned to this term.
For example,〈 {f :•ϕ7 → ϕ8}, (•µ.• 0 → ϕ7) → ϕ8 〉 is also
a valid typing. In fact, this is exactly the typing that we need to

1 Notice that the following subtyping relationship holds:µ.•0 → ϕ3 ≃

(•µ.•0 → ϕ3) → ϕ3 < (µ.• 0 → ϕ3) → ϕ3

Type Inference for Nakano’s Modality – POPL 2015 3 2014/7/8

use for the right-hand occurrence of the termλx.f(xx). If we re-
run the unification procedure using this new type, the attempt will
succeed:

1 : Unify? (µ.• 0 → ϕ3) → ϕ4 , ((•µ.• 0 → ϕ7) → ϕ8) → ϕ9

2 : Unify? (•µ.• 0 → ϕ7) → ϕ8 , µ.• 0 → ϕ3

3 : Unify? (•µ.• 0 → ϕ7) → ϕ8 , (•µ.• 0 → ϕ3) → ϕ3

4 : Unify? •µ.• 0 → ϕ3 , •µ.• 0 → ϕ7

...

Given this solution to the unification problem, we can proceed
straightforwardly to infer〈 ∅, (•ϕ9 → ϕ9) → ϕ9 〉 as a typing
for Y, which is the expected one.

Notice that there is no way of transforming (via substitutions
and weakenings) the originally inferred typing forλx.f(xx) into
the alternative one we have given. Something extra is required.
We propose that this something extra is the notion ofinsertion
variable. Consider if we had been able to infer the following typing
for λx.f(xx): 〈 {f :ι ϕ3 → ϕ4}, (ι µ.•0 → ϕ3) → ϕ4 〉. The
intention behind theι entity is that it marks the place where we
can insert a•, exactly as required.

In the remainder of this paper we will describe how we extend
Nakano’s system with such an entity, and how it enables us to
develop a procedure for inferring widely applicable and general
typings for terms using Nakano types.

4. Extending the Type System
We now come to the point where we can begin describing our tech-
nical contribution. In this section, we will define our extension of
Nakano’s original system S-λ•µ+, which consists of adding inser-
tion variables into the language of types, and extending subtyping
and type assignment accordingly. Our insertion variables are in-
spired by theexpansionvariables of Kfoury and Wells [17].

We first extend the definition of types with a case for construct-
ing types using insertion variables.

Definition 4.1 (Types with Insertion Variables). Types are defined
co-inductively as follows:

τ, σ ::= ϕ | • τ | ι τ | σ → τ

whereϕ and ι range over countably infinite sets of type and in-
sertion variables respectively. We will write~ιn τ to denote the type
ι1 . . . ιn τ and for a sequence of insertion variables~ιn = ι1 . . . ιn
we writeι ∈ ~ιn where there is some1 ≤ k ≤ n such thatι = ιk,
and writeι /∈ ~ιn when there is no suchk. We will writeǫ for the
sequence~ιn whenn = 0.

The definitions of proper and finite types transfer unchanged
from Nakano’s original system (see Section 2). Again, we only
consider finitely representable types. The subtyping relation for the
extended notion of types is defined as for the original system, as the
largest relation on types satisfying the rules in Figure 1 and also the
additional rules given in Figure 3. The first three of the added rules
are direct analogues for insertion variables of the corresponding
rules for•. The last two are more interesting, and say that we can
distribute and factorise insertion variables across occurrences of→
(as well as•) in the same way that we can for the• modality.

Extending the definition of type assignment is even more
straightforward, and needs only the following single extrarule,
again a direct analogue of the corresponding rule in Nakano’s orig-
inal system for•.

ιΓ ⊢ M : ι τ
Γ ⊢ M : τ

whereιΓ denotes the typing environment defined by(ιΓ)(x) =
ι τ if and only if Γ(x) = τ . Where we want to explicitly refer

τ ≤ ι τ

σ ≤ τ

ι σ ≤ ι τ

ι1 ι2 τ ≤ ι2 ι1 τ

ι(σ → τ) ≃ ι σ → ι τ

• ι τ ≃ ι • τ

Figure 3. Additional Rules for Subtyping with Insertion Variables

to type assignment in the extended system in opposition to the
original system we will writeΓ ⊢+ M : τ , however when there
is no ambiguity we will normally use the plain turnstile⊢ for both
systems.

Since the extended set of types and rules for subtyping and
type assignment are strict supersets of those of Nakano’s original
system, we immediately obtain the corollary that our extension is
conservativeover Nakano’s original system. That is to say, every
type that we can assign to a term in Nakano’s system we can also
assign in ours.

Theorem 4.2(Conservativity). If Γ ⊢ M : τ in Nakano’s original
system, thenΓ ⊢+M : τ in our extended system.

We can also show that our extension is sound with respect to
the original system, i.e. whenever we can assign a type to a term in
the extended system, then we can assign a type in the originalsys-
tem. However, in order to show this we will first need to define an
operation on types: theinsertionoperation. This operation is anal-
ogous to the familiar operation of substitution of types for(type)
variables. In the case of insertions, we substitute (possibly empty)
sequences of insertion variables and the• modality for insertion
variables. It is the insertion operation that really characterises the
meaning of insertion variables.

Remark Since we have defined types co-inductively, functions
on types must be defined co-recursively. However, as we con-
sider only regular (in)finite types, it suffices to define these func-
tions inductively over their finite representations (see e.g. [19]).
For ease of presentation, we will take this approach in the remain-
der of the paper. Nakano’s original presentation uses the familiar
notation of binding recursive type variables (e.g.µX.•X → τ),
however we switch to a presentation based on de Bruijn indices
(i.e. µ.•0 → τ), ranged over byn. This is to avoid having to
deal with alpha-renaming and keeping track of equated variable
names when performing unification. Certainly from an implemen-
tation point of view, this is desirable.

Before defining insertions, we first define an auxiliary operation
on types which inserts a• into types, pushing it down until a
terminal or recursive structure is reached.

Definition 4.3 (bPush). The operationbPush on types is defined
as follows:

bPush(ϕ) = •ϕ bPush(• τ) = • (bPush(τ))

bPush(n) = •n bPush(ι τ) = ι (bPush(τ))

bPush(σ → τ) = (bPush(σ)) → (bPush(τ))

bPush(µ.τ) = •µ.τ

This definition can be extended to definebPush[n] which insertsn
modalities into a type, withbPush[0] equivalent to the identity.

It is easy to show that•n τ ≃ bPush[n](τ).

Type Inference for Nakano’s Modality – POPL 2015 4 2014/7/8

Definition 4.4 (Insertions). An insertion [ι 7→ ~ιm•n] (where
n,m ≥ 0) is an operation on types, defined as follows:

[ι 7→~ιm•n](ϕ) = ϕ [ι 7→~ιm•n](• τ) = • ([ι 7→~ιm•n](τ))

[ι 7→~ιm•n](n) = n [ι 7→~ιm•n](µ.τ) = µ.([ι 7→~ιm•n](τ))

[ι 7→~ιm•n](ι′ τ) =







~ιm (bPush[n]([ι 7→~ιm•n](τ)))

if ι = ι′

ι′ [ι 7→~ιm•n](τ) otherwise

[ι 7→~ιm•n](σ → τ) = ([ι 7→~ιm•n](σ)) → ([ι 7→~ιm•n](τ))

If I1 andI2 are two insertions, then so is their compositionI2 ◦ I1.
We extend the operation to type environments byI(Γ)(x) = I(τ)
if and only ifΓ(x) = τ .

We give this rather esoteric definition of insertion (using
bPush), rather than the obvious straightforward one, in order for
insertions to preserve acanonicalstructure of types that we will de-
fine in the next section. Working with this canonical representation
allows an entirely syntax-directed definition of unification.

Insertion operations are sound with respect to subtyping.

Lemma 4.5. LetI be an insertion; ifσ ≤ τ thenI(σ) ≤ I(τ).

Proof. By co-induction on the definition of subtyping.

This leads to the main property that we desire of insertions,that
they are sound with respect to type assignment.

Theorem 4.6. If Γ ⊢ M : τ thenI(Γ) ⊢ M : I(τ).

Proof. By straightforward induction on the structure of typing
derivations; the case for subtyping follows from Lemma 4.5.

This result demonstrates that insertion variables truly fulfil the
purpose for which they were introduced: that is, they mark the
places in types where the• modality may be introduced. The notion
of insertion also allows us to show that our extension is sound with
respect to Nakano’s original system.

Theorem 4.7(Soundness of the Extended System). If Γ ⊢+M : τ
thenΓ′ ⊢ M : σ, for someΓ′ andσ.

Proof. Take the insertionI which replaces each insertion vari-
able by the empty sequence. By Theorem 4.6 we haveI(Γ) ⊢+
M : I(τ). Notice thatI(Γ) andI(τ) are a type environment and
type respectively in the original system, since they do not contain
any insertion variables. It is easy to show by induction on (ex-
tended) typing derivations that, ifΓ ⊢+M : τ with Γ andτ a type
environment and type in the original system, thenΓ ⊢ M : τ , from
which the result follows immediately.

Since it is easy to see that insertion operations preserve finiteness
of types, the corollary of this soundness result is that our extended
type system also has the convergence property.

We conclude this section by giving a few type-theoretic results
for our system. The first two of these will be used to show sound-
ness of the type inference procedure (Theorem 6.5, Section 6).

Lemma 4.8 (Weakening). For type environmentsΓ andΓ′, write
Γ′ ≤ Γ to mean that for allx, Γ(x) = σ ⇒ Γ′(x) = σ′ for some
σ′ ≤ σ; if Γ′ ≤ Γ andΓ ⊢ M : τ thenΓ′ ⊢ M : τ .

Proof. By straightforward induction on the structure of derivations.

Let Γ1 andΓ2 be disjoint type environments (i.e.dom(Γ1) ∩
dom(Γ2) = ∅), and writeΓ1 ∪ Γ2 for the type environment with
dom(Γ1 ∪ Γ2) = dom(Γ1) ∪ dom(Γ2) satisfyingΓ1(x) = τ ⇒
(Γ1 ∪ Γ2)(x) = τ andΓ2(x) = τ ⇒ (Γ1 ∪ Γ2)(x) = τ .

Lemma 4.9(Degradation). LetΓ1 andΓ2 be disjoint type environ-
ments; ifΓ1 ∪ Γ2 ⊢ M : τ , then both(•Γ1) ∪ Γ2 ⊢ M : • τ and
(ιΓ1) ∪ Γ2 ⊢ M : ι τ .

Proof. By straightforward induction on typing derivations.

Lastly, the extended system exhibits a full subject reduction
property.

Theorem 4.10(Subject Reduction). If Γ ⊢ M : τ andM → N ,
thenΓ ⊢ N : τ .

Proof. By straightforward induction on the structure of derivations.
The proof exactly mirrors that for Nakano’s original system.

5. Unification Modulo Subtyping
This section describes the core mechanism needed by our type
inference procedure: the unification of two types. While theformal
definition of our unification process is intricate, the main technical
difficulty lies in how to show that it is a computable notion. To
do this, we build on and extend the techniques of Brandt and
Henglein [6] for deciding equality of recursive type definitions.
We define unification using a judgementO ⊢ σ ≤ τ , which says
that the operationO unifies the typesσ andτ modulo subtyping
(i.e.O(σ) ≤ O(τ)), and derive valid judgements via an inference
system. Since the inference system we define issyntax-directedit
naturally leads to the definition of an algorithm, however toshow
that the algorithm is terminating we need to show that the height of
a derivation (if it exists) is bounded.

5.1 A Canonical Form for Types

In order to achieve a syntax-directed unification procedure, we
work with a canonical form of types that we now define. Each type
has a canonical form to which it is equivalent (in the sense ofthe
equivalence induced by subtyping).

Definition 5.1 (Canonical Types). Canonical (regular) types are
defined by the following grammar:

κ ::= β | κ1 → κ2 (canonical types)

β ::= α | ι β (partially approximative types)

α ::= ξ | •α (fully approximative types)

ξ ::= ϕ | n | µ.κ (exact types)

We note that this definition of canonicity is different to theone
given by Nakano in [24]. The system described there is F-λ•µ+,
and the definition given by Nakano is appropriate to that system.
Our definition above is appropriate for our extension of the system
S-λ•µ+.

A further advantage of our definition of canonical types is that
it affords a clean separation of thestructuralcontent of a type from
its logical content. This will allow the unification procedure to treat
the two sub-problems of structural unification and checkingof log-
ical consistency in an orthogonal manner. The information encap-
sulating logical consistency is expressed in the• modalities and
insertion variables, whereas the structural information is contained
in the functional shape of the type, given by the→ and constructor
and theµ operator for recursive definition.

5.2 Operations on Types

The unification procedure will return an operation on types that
preserves canonicity. To that end, in addition to the operations we
defined in the previous section we must define two more. The first
will insert insertion variables at appropriate places according to the
grammar just defined.

Type Inference for Nakano’s Modality – POPL 2015 5 2014/7/8

Definition 5.2 (iPush). The operationiPush on types is defined as:

iPush[ι](ϕ) = ι ϕ iPush[ι](• τ) = ι • τ

iPush[ι](n) = ιn iPush[ι](ι′ τ) = ι ι′ τ

iPush[ι](σ → τ) = (iPush[ι](σ)) → (iPush[ι](τ))

iPush[ι](µ.τ) = ι µ.τ

This definition is extended to sequences of insertion variables by
iPush[~ιn](τ) = (iPush[ι1] ◦ . . . ◦ iPush[ιn])(τ).

Analogously to the case forbPush (see Definition 4.3), it is easy
to show thatι1 . . . ιn τ ≃ iPush[~ι](τ).

The other operation we need is one that substitutes types for
type variables. When defining type substitutions, we will need to
ensure that the type we substitute isclosed, in the sense that its re-
cursive definition has no ‘free’ occurrences of recursive type refer-
encesn (i.e. de Bruijn indices). Although we may formally include
such open representations in the set of true types by considering
‘free’ references to simply stand for ordinary type variables, allow-
ing them to take place in substitutions isunsoundsince they may
be ‘captured’ by recursive binders according to the definition of
substitution we now give.

Definition 5.3 (Type Substitution). A (canonicalising) type sub-
stitution [ϕ 7→ κ] is an operation on types that replaces the type
variableϕ by the (closed) canonical typeκ, and is defined by:

[ϕ 7→ κ](n) = n [ϕ 7→ κ](ϕ′) =

{

κ if ϕ = ϕ′

ϕ′ otherwise

[ϕ 7→ κ](• τ) = bPush([ϕ 7→ κ](τ))

[ϕ 7→ κ](ι τ) = iPush[ι]([ϕ 7→ κ](τ))

[ϕ 7→ κ](µ.τ) = µ.([ϕ 7→ κ](τ))

[ϕ 7→ κ](σ → τ) = ([ϕ 7→ κ](σ)) → ([ϕ 7→ κ](τ))

We collect of the operations that we have defined on types into
a single definition oftype operation.

Definition 5.4 (Type Operations). A type operationO is either
a basic operation (i.e. one ofbPush, iPush, an insertion, or a
type substitution), or is the composition of two type operations
O1 ◦O2. Type operations are extended to type environments by
O(Γ)(x) = O(τ) if and only ifΓ(x) = τ .

The soundness results that we gave for insertions in Section4
extend to the larger notion of type operation.

Lemma 5.5 (Soundness of Type Operations). Let O be a type
operation; then the following results hold:

1. If σ ≤ τ , thenO(σ) ≤ O(τ).
2. If Γ ⊢ M : τ , thenO(Γ) ⊢ M : O(τ).

Proof. As a generalisation of the proof for insertions, the first result
follows by co-induction on the definition of subtyping; and the
second by induction on the structure of typing derivations.

5.3 Constructing Recursive Type Solutions

The key task of the unification procedure will be to constructrecur-
sively defined types which can be used as substitutions that unify
types modulo subtyping. Such types will need to be constructed
whenever we encounter a pair of types(σ, τ) such thatσ is a type
variable that occurs inτ (or vice-versa). In the context of Nakano
types, there is the added complication of having to ensure that the
type constructed isproper(note that it need not be finite). Since we
have insertion variables, we are afforded some flexibility:it need
not be the case that all occurrences of the type variable fallwithin
the scope of a• in τ , as long as they fall under the scope of one or

more insertion variables. In this case, we can construct an insertion
that converts the relevant insertion variables to a•, and then we can
safely ‘close’ the recursive type by promoting the type variable to
a recursive reference.

Definition 5.6 (Raw Type Variables). We writeRaw(τ) to denote
the set of all type variables inτ which do not occur under the scope
of either an insertion variable or the• type constructor.

We define the notion ofcover setto be enable us to construct
proper recursive type definitions.

Definition 5.7 (Cover Set). The cover set functionCov is defined
as follows:

Cov[ϕ](ϕ′) = Cov[ϕ](n) = Cov[ϕ](• τ) = ∅

Cov[ϕ](ι τ) =

{
{ι} if ϕ ∈ Raw(τ)

Cov[ϕ](τ) otherwise

Cov[ϕ](σ → τ) = Cov[ϕ](σ) ∪ Cov[ϕ](τ)

Cov[ϕ](µ.τ) = Cov[ϕ](τ)

The cover setCov[ϕ](τ) of a typeτ with respect to the type
variableϕ is the (minimal) set of insertion variables whose conver-
sion to• ensures that the type resulting from promotingϕ is closed
(i.e. a true type).

Proposition 5.8. Let ϕ ∈ Vars(τ) \ Raw(τ) andCov[ϕ](τ) =
{ι1, . . . , ιn} and define the operationO = [ι1 7→ ι1 •] ◦
. . . ◦ [ιn 7→ ιn •], thenµ.([0/ϕ](O(τ))) is closed.

The last component we must define in the construction of re-
cursive type definitions is the promotion of a type variable to a re-
cursive reference of the type in which it appears. For example, if
we wish to construct a recursively defined type that unifiesϕ with
the type•ϕ → ϕ′, then we must promote the type variableϕ to a
recursive reference0 and apply theµ recursion operator over the
resulting type to obtainµ.• 0 → ϕ′. We then build a substitution
that replaces the promoted type variable by the newly constructed
recursive type, i.e.[ϕ 7→ µ.•0 → ϕ′]. We will write µ.([0/ϕ](τ))
to denote the result of promoting the type variableϕ in τ so that it
recursively references the typeτ in which it appears. Crucially, the
following property holds of variable promotion, meaning that such
recursive solutions aresound:

Proposition 5.9. µ.([0/ϕ](τ)) ≃ [ϕ 7→ µ.([0/ϕ](τ))](τ).

5.4 The Unification Procedure

We define the unification procedure itself as an inference system,
the derivations of which are proofs of the validity of unification
judgementsof the formO ⊢ σ ≤ τ . The procedure arises as a proof
search algorithm, the deterministic nature of which is given by the
fact that the inference system is directed by the syntax of types;
thus, at each stage there is only one possible inference rulethat will
apply.

Definition 5.10 (Unification Inference). The inference rules for
deriving valid unification judgements are given in Figure 4.

The inference system is extensive and so we do not give an
exhaustive explanation of all the rules here. Instead, we will dis-
cuss some of the most important and salient aspects. The notation
[0 7→ µ.τ](τ) which appears in many of the rules is used to indi-
cate theunfoldingof a recursive type definition (since the concept
is standard, we elide a formal definition).Id denotes the identity
substitution. Additionally, apart from the (top) rule where we ex-
plicitly state we consider the⊤ type, we assume that all types are
not (equivalent to)⊤.

We note that the rules fall into two categories: logical rules,
and structural rules. The logical rules produce insertions, aiming

Type Inference for Nakano’s Modality – POPL 2015 6 2014/7/8

Top Types (Structural Rule) Unifyfing Type Variables (Structural Rules)

Id ⊢ τ ≤ ⊤

(ι /∈~ι andr ≤ s)

[ι 7→~ι •s−r] ⊢ ι •r ϕ ≤~ι •s ϕ

(ι /∈~ι andr ≤ s)

[ι 7→~ι •r−s] ⊢~ι•r ϕ ≤ ι •s ϕ

(r ≤ s)

Id ⊢ •r ϕ ≤ •s ϕ

(ϕ 6= ϕ′ andr ≤ s)

[ϕ 7→ •s−r ϕ′] ⊢ •r ϕ ≤ •s ϕ′

(ϕ 6= ϕ′ ands < r)

[ϕ′ 7→ •r−s ϕ] ⊢ •r ϕ ≤ •s ϕ′

(s < r)

[ϕ 7→ ⊤] ⊢ •r ϕ ≤ •s ϕ

Unifying Type Variables (Logical Rules)(whereO1 = [ι 7→ ǫ])

O ⊢ O′(~ιn •r ϕ) ≤ O′(~ι′m •s ϕ′)

O ◦O′ ⊢ ι~ιn •r ϕ ≤ ι′ ~ι′m •s ϕ′

(
ι 6= ι′

n,m > 0
O

′ = [ι 7→ ι′]

)

O ⊢ •r ϕ ≤ •s ϕ′ (ι /∈~ι, ϕ 6= ϕ′)

O ◦[ι 7→~ι] ⊢ ι •r ϕ ≤ ~ι′ •s ϕ′

O ⊢ •r ϕ ≤ •s ϕ′ (ι /∈~ι, ϕ 6= ϕ′)

O ◦[ι 7→~ι] ⊢~ι•r ϕ ≤ ι′ •s ϕ′

O2 ⊢ •r ϕ ≤ O1(~ι •
s ϕ′)

O2 ◦O1 ⊢ ι •r ϕ ≤~ι •s ϕ′

(

ι ∈~ι or else
ϕ = ϕ′, s < r

)
O2 ⊢ O1(~ι •

r ϕ) ≤ •s ϕ′

O2 ◦O1 ⊢~ι•r ϕ ≤ ι •s ϕ′

(

ι ∈~ι or else
ϕ = ϕ′, r ≤ s

)
O2 ⊢ O1(~ι •

r ϕ) ≤ O1(κ1 → κ2)

O2 ◦O1 ⊢ ι~ι •r ϕ ≤ κ1 → κ2

O2 ⊢ •r ϕ ≤ O1(~ιm •s ϕ′)

O2 ◦O1 ⊢ •r ϕ ≤ ι~ιm •s ϕ′
(m > 0)

O2 ⊢ O1(~ιn •r ϕ) ≤ •s ϕ′

O2 ◦O1 ⊢ ι~ιn •r ϕ ≤ •s ϕ′
(n > 0)

Constructing Standard Substitutions (Structural Rules)(where all types areclosed)

(ϕ /∈ Vars(κ1 → κ2))

[ϕ 7→ κ1 → κ2] ⊢ ϕ ≤ κ1 → κ2

(ϕ /∈ Vars(κ1 → κ2))

[ϕ 7→ κ1 → κ2] ⊢ κ1 → κ2 ≤~ι •s ϕ

(ϕ /∈ Vars(µ.κ), r ≤ s)

[ϕ 7→ •s−r µ.κ] ⊢ •r ϕ ≤ •s µ.κ

(ϕ /∈ Vars(µ.κ), s ≤ r)

[ϕ 7→ •r−s µ.κ] ⊢ •r µ.κ ≤ •s ϕ

(ϕ /∈ Vars(µ.κ), r < s)

[ϕ 7→ µ.κ] ⊢ •r µ.κ ≤ •s ϕ

Constructing Recursive Solutions (Structural Rules)(where all types areclosed)

(
ϕ ∈ Vars(κ1 → κ2) \ Raw(κ1 → κ2)
Cov[ϕ](κ1 → κ2) = {ι1, . . . , ιn}
O = [ι1 7→ ι1 •] ◦ . . . ◦ [ιn 7→ ιn •]

)

[ϕ 7→ µ.([0/ϕ](O(κ1 → κ2)))] ◦O ⊢ ϕ ≤ κ1 → κ2

(
ϕ ∈ Vars(κ1 → κ2) \ Raw(κ1 → κ2)
Cov[ϕ](κ1 → κ2) = {ι1, . . . , ιn}
O = [ι1 7→ ι1 •] ◦ . . . ◦ [ιn 7→ ιn •]

)

[ϕ 7→ µ.([0/ϕ](O(κ1 → κ2)))] ◦O ⊢ κ1 → κ2 ≤ ~ι′ •s ϕ
(
r ≤ s, ϕ ∈ Vars(•s−r µ.κ) \ Raw(•s−r µ.κ)

Cov[ϕ](•s−r µ.κ) = {ι1, . . . , ιn}
O = [ι1 7→ ι1 •] ◦ . . . ◦ [ιn 7→ ιn •]

)

[ϕ 7→ µ.([0/ϕ](O(•s−r µ.κ)))] ◦ O ⊢ •r ϕ ≤ •s µ.κ

(
ϕ ∈ Vars(•r µ.κ) \ Raw(•r µ.κ)
Cov[ϕ](•r µ.κ) = {ι1, . . . , ιn}

O = [ι1 7→ ι1 •] ◦ . . . ◦ [ιn 7→ ιn •]

)

[ϕ 7→ µ.([0/ϕ](O(•r µ.κ)))] ◦ O ⊢ •r µ.κ ≤ •s ϕ

Unifying Function Types/Recursive References (Structural Rules)

O1 ⊢ κ′
1 ≤ κ1 O2 ⊢ O1(κ2) ≤ O1(κ

′
2)

O2 ◦O1 ⊢ κ1 → κ2 ≤ κ′
1 → κ′

2

O ⊢ κ1 ≤ κ2 (r ≤ s)

O ⊢ •r µ.κ1 ≤ •s µ.κ2

(s < r)

[Tail(µ.κ2) 7→ ⊤] ⊢ •r µ.κ1 ≤ •s µ.κ2

(r ≤ s)

Id ⊢ •r n ≤ •s n

O ⊢ κ1 → κ2 ≤ iPush[~ι](bPush[s]([0 7→ µ.κ](κ)))

O ⊢ κ1 → κ2 ≤~ι •s µ.κ

O ⊢ iPush[~ι](bPush[r]([0 7→ µ.κ](κ))) ≤ κ1 → κ2

O ⊢~ι •r µ.κ ≤ κ1 → κ2

General Logical Rules(whereξ1 andξ2 are not both type variables)

O ⊢~ιnα1 ≤ ~ι′mα2

O ⊢ ι~ιnα1 ≤ ι ~ι′mα2

(n,m > 0)
O2 ⊢ O1(~ιn •r ξ1) ≤ O1(~ι′m •s ξ2)

O2 ◦O1 ⊢ ι~ιn •r ξ1 ≤ ι′ ~ι′m •s ξ2

(
ι 6= ι′ and either(r ≤ s, n > 0)

or (s < r,m > 0)
O1 = [ι 7→ ι′]

)

O2 ⊢ O1(ξ1) ≤ O1(ξ2)

O2 ◦O1 ⊢ ι •r ξ1 ≤~ι•s ξ2

(
ι /∈~ι, r ≤ s

O1 = [ι 7→~ι •s−r]

)
O2 ⊢ O1(ξ1) ≤ O1(ξ2)

O2 ◦O1 ⊢~ι•r ξ1 ≤ ι •s ξ2

(
ι /∈~ι, s < r

O1 = [ι 7→~ι •r−s]

)

O2 ⊢ O1(•
r ξ1) ≤ O1(~ι •

s ξ2)

O2 ◦O1 ⊢ ι •r ξ1 ≤~ι •s ξ2

(

ι ∈~ι, r ≤ s
O1 = [ι 7→ ǫ]

)
O2 ⊢ O1(~ι •

r ξ1) ≤ O1(•
s ξ2)

O2 ◦O1 ⊢~ι•r ξ1 ≤ ι •s ξ2

(

ι ∈~ι, s < r
O1 = [ι 7→ ǫ]

)

O2 ⊢ O1(~ιn •r ξ1) ≤ O1(•
s ξ2)

O2 ◦O1 ⊢ ι~ιn •r ξ1 ≤ •s ξ2

(

n > 0 or s < r
O1 = [ι 7→ ǫ]

)
O2 ⊢ O1(•

r ξ1) ≤ O1(~ιm •s ξ2)

O2 ◦O1 ⊢ •r ξ1 ≤ ι~ιm •s ξ2

(

m > 0 or r ≤ s
O1 = [ι 7→ ǫ]

)

Figure 4. The Rules of the Unification Inference System

Type Inference for Nakano’s Modality – POPL 2015 7 2014/7/8

...
O?

2 ⊢ µ.((•0 → •ϕ′) → ϕ′) ≤ •µ.((•0 → ϕ) → ϕ) → ϕ

...
O?

3 ⊢ O?
2(ϕ) ≤ O?

2(ϕ
′)

O?
1 = O?

3 ◦O
?
2 ⊢ (•µ.((• 0 → ϕ) → ϕ) → ϕ) → ϕ ≤ µ.((• 0 → •ϕ′) → ϕ′) → ϕ′

unify components of function types

O?
1 ⊢ µ.((•0 → ϕ) → ϕ) ≤ µ.((•0 → •ϕ′) → ϕ′) → ϕ′

unfold left

Figure 5. Initial Steps of a Non-terminating Naı̈ve Proof Search for Unification

to unify the logical structure of the two types, as encoded inthe•
modalities. Notice how an insertion variable may either be substi-
tuted for some sequence of other insertion variables and• modal-
ities, or may be removed via an insertion[ι 7→ ǫ]. The latter takes
place when we try to unify and insertion variableι with a sequence
of insertion variables in which it occurs; there is no insertion that
can solve this – the occurs check moves from type variables toin-
sertion variables. Ultimately, the goal of the logical rules is to unify
as much logical information before applying a structural rule.

The structural rules compare the functional shapes of typesto
make sure that they are compatible. This process involves unfolding
recursive definitions at particular points, namely when we are com-
paring a top-level function typeσ → τ with a top-level recursive
definitionµ.τ ′. As expected, when comparing two top-level func-
tion types, the domains (left-hand sides) of the two types are uni-
fied, followed by unification of the ranges (right-hand sides). Since
we are unifying modulo subtyping, however, domains of function
types are unifiedcontra-variantly. The structural base cases of the
procedure are when we unify a type variableϕ with another type
τ . In this case, a substitution ofϕ for suitable typeσ is gener-
ated (e.g. when theϕ variable occurs inτ , a recursive type is con-
structed as a solution). At this point, the structural rulesalso check
any logical constraints represented by the• modalities that remain,
which essentially amounts to ensuring that the types in the state-
mentσ ≤ τ can be made equivalent to•r σ and•s τ wherer ≤ s.
If this is not possible, the procedure may produce a substitution that
makes the right-hand type equivalent to⊤.

We point to an important feature of our approach: that of how
two top-level recursive definitionsµ.τ andµ.σ are unified. This
is achieved, not by unfolding the two definitions, but byremoving
theµ-binder and unifying the two bodies of the definitions,τ andσ.
This approach exactly mirrors that given by Cardone and Coppo for
deciding equality between recursive types [8]. The notion of equal-
ity that this approach characterises, however, isweak(i.e. equal-
ity up to finite unfoldings of definitions). Thus, our system may
fail to unify some types whichcanbe made strongly equivalent. A
simple example of this is the problem of unifyingµ.• 0 → ϕ with
µ.• 0 → ϕ′ → ϕ′. We will return to this point in our conclusions.

The unification inference system issound, however, as shown
by the following result.

Lemma 5.11(Soundness of Unification). If O ⊢ σ ≤ τ , thenO is
an operation andO(σ) ≤ O(τ).

Proof. By induction on the structure of the unification inference
derivations using the soundness of operations with respectto sub-
typing (Lemma 5.5). In the base cases where a substitution oftype
variable for a new recursive type is generated, we use Proposition
5.9.

Termination

In order to show that the inference system of Figure 4 gives anal-
gorithm, we must show that the proof search procedure terminates.
This would not be the case if we naı̈vely implemented such a proce-
dure since it involves unfolding recursive definitions, thus recursing

on larger subproblems. Consider the unification problem shown in
Figure 5, for which the first few steps are given. Incidentally, this
is another example of two types thatcanbe unified such that they
are strongly equivalent, but not such that they are weakly so. Notice
that after two steps, we are faced with a proof subgoal which has
the same structure as the original goal (modulo occurrencesof •). A
naive algorithm would repeat these two steps ad infinitum. Infact,
no proof exists of the validity of the desired unification judgement,
and this is the source of the non-terminating behaviour.

To obtain a terminating algorithm, we show that when a deriva-
tion proving the validity of a unification judgement exists,its height
has a well-defined bound. This allows a decreasing measure tobe
incorporated into the proof search algorithm, thus ensuring termi-
nation. The fact that the height of derivations is bounded further
implies that the proof search algorithm is complete with respect to
the inference system. Our technique is a direct extension ofthat
used by Brandt and Henglein [6], and later by Cardone and Coppo
[8]. Fundamentally, it is based upon the fact that a regular infinite
tree (type) only has a finite number of distinct subtrees, andthus the
amount of information contained in a recursive type definition isfi-
nite. Equivalently, we can observe that when unfolding recursive
types we will only even encounter a finite (and bounded) number
of subcomponents. This finite set is encapsulated in the notion of
subterm closurein [6, 8].

We must be careful when extending the notion of subterm clo-
sure to Nakano types, however. In general, the subterm closure of
a (canonical) Nakano type isnot finite, since• modalities accu-
mulate as we unfold the recursive definitions. Luckily, though, we
may ignore the logical information encoded by the modalities: the
structure of a proof in the unification inference system is dictated
only by thefunctional shapeof types, whichis characterised by the
(finite) subterm closure.

Definition 5.12 (Structural Closure). 1. We define thestructural
representativeStruct(τ) of a (Nakano) typeτ by erasing all in-
sertion variables and occurrences of the• modality. Recursive
definitions of structural representatives can be obtained from
recursive definitions of types as follows:

Struct(ϕ) = ϕ Struct(n) = n

Struct(• τ) = Struct(ι τ) = Struct(τ)

Struct(σ → τ) = Struct(σ) → Struct(τ)

Struct(µ.τ) = µ.(Struct(τ))

2. Thestructural closureof a recursive type definition is given by:

SC(ϕ) = {ϕ} SC(n) = {n}

SC(• τ) = SC(ι τ) = SC(τ)

SC(σ → τ) = {Struct(σ → τ)} ∪ SC(σ) ∪ SC(τ)

SC(µ.τ) = {Struct(µ.τ)} ∪ SC(τ) ∪ SC([0 7→ µ.τ](τ))

3. The definition of structural closure is extended to sets oftypes
T bySC(T) = ∪τ∈T (SC(τ)).

Type Inference for Nakano’s Modality – POPL 2015 8 2014/7/8

It is straightforward to show that the structural closureSC(τ) of
τ is equal to the subterm closure (as defined in [6, 8]) ofStruct(τ).
Thence it follows thatSC(τ) (and thus alsoSC(T)) is finite.

We must take further care however. Our termination argument
will hinge on the fact that (the structural representative of) ev-
ery type occurring in a unification derivation belongs to a finitely
bounded set. Since the unification procedure applies operations to
types as it goes, it is not the case that every such entity willbe in
the structural (i.e. subterm) closure of the types in the original goal.
The subterm closure suffices for deciding equality between recur-
sive types, but for unification we must find another set. Fortunately
such a setdoesexist, and we call this set theunificationclosure.

We first define a set that combines the structural closure of all
the recursive types that may be generated from a given type bythe
unification procedure.

Definition 5.13 (Recursion Complete Structural Closure). There-
cursion completestructural closure of a type is defined by:

SC∗
µ(τ) = SC(τ) ∪

⋃

σ∈SC(τ)
σ closed




⋃

ϕ∈Vars(σ)

SC∗
µ(µ.([0/ϕ](σ)))





This definition is extended to sets of typesT by SC∗
µ(T) =

∪τ∈T (SC
∗
µ(τ)).

Using this, we can then define the unification closure of a set of
types, which takes into account all of the types which may possibly
be generated during unification of the types in that set.

Definition 5.14(Unification Closure). Theunification closureof a
set of typesT is defined by:

UC(T) = SC∗
µ(T) ∪

⋃

ϕ∈Vars(T)








⋃

τ∈SC∗

µ
(T)

ϕ/∈Vars(τ)

UC([ϕ 7→ τ](T))








whereVars(T) = ∪τ∈TVars(τ) and [ϕ 7→ τ](T) denotes the set
obtained by applying the substitution[ϕ 7→ τ] to each type inT .

We are interested in two key properties of the unification clo-
sure: that it is finite, and that it contains all of the structural rep-
resentative of types that occur in judgements in a derivation of the
unification inference system.

Lemma 5.15(Finiteness and Adequacy of Unification Closure).

1. LetT be a finite set of types, thenUC(T) is finite.
2. Let D be a derivation of the judgementO ⊢ σ ≤ τ , then

all statementsσ′ ≤ τ ′ occurring in D are such that both
Struct(σ′) andStruct(τ ′) are in the setUC({σ, τ}).

Proof. 1. We show the property for each closure construction
in turn. The finiteness ofSC∗

µ(τ) follows from the finite-
ness ofSC(τ) by induction on the number of distinct type
variables inτ , since the number of distinct type variables in
µ.[0 7→ µ.ϕ](τ) is strictly less than inτ . Finiteness ofSC∗

µ(T)
for finite setsT then follows easily by induction on the size
of T . Finally, finiteness ofUC follows from the finiteness of
SC∗

µ(T) by induction on the number of distinct type variables
in T

2. By straightforward induction on the structure of the derivation.

These properties allow us to show that the height of any deriva-
tion of a unification judgementO ⊢ σ ≤ τ is finitely bounded, and
thus termination of the unification procedure.

Theorem 5.16.LetD be a derivation of the judgementO ⊢ σ ≤ τ ,
then the height ofD is no greater than| UC({σ, τ})|2.

Proof. We define the height ofD as the maximum number of
structural rules along any path inD. The proof then proceeds
by contradiction. AssumeD has a heighth > | UC({σ, τ})|2.
Then there exist derivationsD1, . . . ,Dh such that eachDi is a
subderivation ofD, and for each1 ≤ i 6= j ≤ h, the heights
of derivationsDi andDj are different, specificallyhi = hi+1 + 1
wherehi andhi+1 are the heights ofDi andDi+1 respectively,
for each1 ≤ i < h. Also, there is a set of pairs of types
{(σ1, τ1), . . . , (σh, τh)} which are the types in the concluding
judgements of each of the derivationsD1, . . . ,Dh.

Since the structure of derivations is syntax-directed, we can
show by straightforward induction on derivations that ifσ, σ′, τ
andτ ′ are types such thatStruct(σ) = Struct(σ′) andStruct(τ) =
Struct(τ ′), and D and D′ are derivations ofO ⊢ σ ≤ τ and
O′ ⊢ σ′ ≤ τ ′ respectively, then the heights ofD and D′ must
be equal.

From Lemma 5.15 we know that bothStruct(σi) andStruct(τi)
are inUC({σ, τ}) for every1 ≤ i ≤ h. Since the number of dis-
tinct pairs(σ′, τ ′) such that bothStruct(σ′) andStruct(τ ′) are
in UC({σ, τ}) is | UC({σ, τ})|2 < h, it must be that there are
two distinct j, k ≤ h such thatStruct(σj) = Struct(σk) and
Struct(τj) = Struct(τk). Thus, by the auxiliary lemma stated
above, it must be that the heights ofDj andDk are the same. How-
ever, this contradicts our earlier deduction that their heights are
different. Therefore, our original assumption must have been false
and the height ofD cannot exceed| UC({σ, τ})|2.

This argument is analogous to the one used in [8].

6. The Type Inference Procedure
Having defined a type unification procedure, we can now present
our type inference procedureType. As expected, it takes a term
M , and returns a pair consisting of a type environmentΓ and a
type τ such thatτ can be assigned toM using the environment
Γ. Its definition is almost identical to the standard type inference
procedure for simply typed lambda calculus, the only difference
being a subtlety in the case for typing an application in which we
must introduce insertion variables. This case of course also makes
use of the unification procedure, which is used to both a) unify
the type of the operator with a type constructed using that ofthe
operand, and b) unify the type environments inferred for each of the
components of the application. Before defining the type inference
procedure itself, we therefore extend the notion of unification to
type environments. We will also switch from expressing unifiability
of types using judgements to writingUnifyµ≤(σ, τ) = O, in order
to stress that unification is aprocedure.

Definition 6.1 (Unification of Type Environments). The unification
procedure is extended to type environments as follows, where we
write ∅ for the environment that is undefined on all variables, and
Γ \ x for the environment that is defined exactly likeΓ, except onx
where it is undefined:

Unify
µ
≤(∅,Γ) = Id

Unify
µ
≤((Γ, x:σ), (Γ

′, x:τ)) = O2 ◦O1

if Unify
µ
≤(σ, τ) = O1

and Unify
µ
≤(Γ \ x,Γ′ \ x) = O2

Unify
µ
≤((Γ, x:σ), (Γ

′, x:τ)) = O2 ◦O1

Type Inference for Nakano’s Modality – POPL 2015 9 2014/7/8

if Unify
µ
≤(σ, τ) fails

and Unify
µ
≤(τ, σ) = O1

and Unify
µ
≤(Γ \ x,Γ′ \ x) = O2

Unify
µ
≤((Γ, x:σ),Γ

′) = Unify
µ
≤(Γ \ x,Γ′)

if x /∈ dom(Γ′)

Since unification (when it succeeds) does not necessarily make
types equivalent, there is a small subtlety involved in combining
two environments that have been unified. When doing so, we will
need to pick out the more specific type for each term variable
whenever there is a choice; if the two types do happen to be
equivalent, we may pick the ‘simplest’ one.

Definition 6.2 (Combining Environments). Let thesizeof a type
|τ | be some suitable measure of its complexity (e.g. the maximum
number of nestedµ-binders). We define acombiningoperation ·∪
on type environments by(Γ1 ·∪ Γ2)(x) = τ if and only if:

1. Γ1(x) = τ & x /∈ dom(Γ2); or
2. Γ2(x) = τ & x /∈ dom(Γ1); or
3. Γ1(x) = τ & Γ2(x) = σ & τ ≤ σ & σ 6≤ τ ; or
4. Γ2(x) = τ & Γ1(x) = σ & τ ≤ σ & σ 6≤ τ ; or
5. Γ1(x) = τ & Γ2(x) = σ & τ ≃ σ & |τ | ≤ |σ|; or
6. Γ2(x) = τ & Γ1(x) = σ & τ ≃ σ & |τ | < |σ|;

The following property, that combining unified environments
produces a more specific environment, is needed to show that the
type inference procedure we define below is sound.

Lemma 6.3. Let Γ1 and Γ2 be type environments such that
Unify

µ
≤(Γ1,Γ2) = O, for some operationO; then it holds that

both(O(Γ1) ·∪O(Γ2)) ≤ Γ1 and(O(Γ1) ·∪O(Γ2)) ≤ Γ2.

We can now define the type inference procedure.

Definition 6.4 (Type Inference Procedure). The procedureType is
defined as follows:

Type(x) = 〈 {x:ϕ}, ϕ 〉 whereϕ fresh

Type(λx.M) =







〈Γ \ x, σ → τ 〉

if Type(M) = 〈 (Γ, x:σ), τ 〉

〈Γ,⊤ → τ 〉

if Type(M) = 〈Γ, τ 〉 andx /∈ dom(Γ)

Type(MN) = 〈 iPush[ι2](Γ
′
1) ∪ Γ′

2, iPush[ι2](O(ϕ)) 〉

if Type(M) = 〈Γ1, σ 〉
Type(N) = 〈Γ2, τ 〉
Unify

µ
≤(σ, iPush[ι1](τ) → ϕ) = O1

Unify
µ
≤(O1(Γ1),O1(Γ2)) = O2

whereϕ, ι1, ι2 fresh
O = O2 ◦O1

Γ′
1 = {x:σ | x ∈ Γ1 & (O(Γ1) ·∪O(Γ2))(x) = σ}

Γ′
2 = {y:τ | y /∈ Γ1 & (O(Γ1) ·∪ O(Γ2))(y) = τ}

The main result of this section is that our type inference proce-
dure issound.

Theorem 6.5 (Soundness of Type Inference). If Type(M) =
〈Γ, τ 〉 thenΓ ⊢ M : τ .

Proof. By induction on the structure of terms. The cases when
the term is a variable or an abstraction are trivial. We discuss

the case for an application. By the inductive hypothesis, wehave
typeability of the subcomponents, i.e.Γ1 ⊢ M : σ andΓ2 ⊢
N : τ . The soundness of unification (Lemma 5.11) givesO1(σ) ≤
O1(iPush[ι1](τ) → ϕ). Thus by soundness of operations (Lemma
5.5), subtyping and weakening (Lemmas 6.3 and 4.8) it follows
that O(Γ1) ·∪O(Γ2) ⊢ M : O(iPush[ι1](τ)) → O(ϕ). Notice
that τ ≤ ι1 τ ≃ iPush[ι1](τ). Thus by soundness of operations,
subtyping and weakening again, we haveO(Γ1) ·∪O(Γ2) ⊢ N :
O(iPush[ι1](τ)). Then by the typing rule for applications it follows
thatO(Γ1) ·∪O(Γ2) ⊢ MN : O(ϕ). Notice thatO(Γ1) ·∪O(Γ2) =
Γ′
1 ∪ Γ′

2, so by the degradation property (Lemma 4.9) we have
(ι2 Γ

′
1) ∪ Γ′

2 ⊢ MN : ι2(O(ϕ)). Notice also thatiPush[ι2](Γ′
1) ≃

(ι2 Γ
′
1) and iPush[ι2](O(ϕ)) ≃ ι2(O(ϕ)), and so the final result

follows again by weakening and subtyping.

We do not have a completeness result for our procedure (i.e. if
a term can be assigned a type, then our procedure also infers one),
and we discuss this in more detail below. However, we believethat
our algorithm can infer types for a large class of terms, at the same
time inferring types which are, in a sense, most general. This we
also discuss below.

6.1 Some Examples of Inferred Types

We will now demonstrate how the type inference procedure works
by considering some examples. Firstly we will revisit the typing of
Curry’s fixed point combinator, showing how the type inference
procedure defined above produces a typings with insertion vari-
ables at the appropriate place as discussed in Section 3. We will
then consider the type that the procedure infers for the familiar λ-
termS = λxyz.xz(yz). As we proceed, we will also discuss the
generality of the types that are inferred.

Curry’s Fixed Point Combinator

To demonstrate how our algorithm infers a type forY, we will
proceed as in Section 3 from the bottom up. The reader is encourage
to compare the presentation here with the one given previously.
Recall the definition of the fixed point combinator:

Y = λf.(λx.f(xx))(λx.f(xx))

Similar to the standard type inference algorithm for sim-
ply typed lambda calculus, our procedure infers vanilla typings
(i.e. without any insertion variables) for term variables.Thus we
have typings〈Γ1 = {x:ϕ1}, σ = ϕ1 〉, 〈Γ2 = {x:ϕ2}, τ = ϕ2 〉
for the two components of the self-applicationxx. The inference
of a type for the application itself, however, proceeds differently.
Instead of unifyingϕ1 with ϕ2 → ϕ3, our algorithm solves the
following problem:

Unify
µ
≤ ϕ1 , ι1 ϕ2 → ϕ3 (ι1, ϕ3 fresh)

producing a straightforward substitution[ϕ1 7→ ι1 ϕ2 → ϕ3]. This
substitution is then applied to the type environments inferred for
the subcomponents, and these are then unified. This results in the
following call.

Unify
µ
≤ ι1 ϕ2 → ϕ3 , ϕ2

Note thatϕ2 is not under the scope of a• in the left-hand type, but
it is under the scope of an insertion variable (the relevant coverset
is {ι1}). Thus, we produce an insertion[ι1 7→ ι1 •] to ensure that
the ensuing recursive type we construct is proper, and generate the
substitution[ϕ2 7→ µ.ι1 •0 → ϕ3]. Applying the substitutions and
insertion generated so far to the type environments, we get

O(Γ1) = {x:ι1 •µ.(ι1 •0 → ϕ3) → ϕ3}

O(Γ2) = {x:µ.(ι1 • 0 → ϕ3)}

Type Inference for Nakano’s Modality – POPL 2015 10 2014/7/8

where

O = [ϕ2 7→ µ.ι1 •0 → ϕ3] ◦

[ι1 7→ ι1 •] ◦ [ϕ1 7→ ι1 ϕ2 → ϕ3]

Notice that the two types forx are equivalent(≃), which was
not the case for the type inference procedure without insertion
variables. When combining the environments, we can then pick the
simpler one, to getO(Γ1) ·∪O(Γ2) = {x:µ.(ι1 •0 → ϕ3)}.

We now split the environment into two disjoint environments
according to the which variables occurred in each of the two com-
ponents of the application, and add an extra insertion variable to
the types of those variables from the left-hand component. Since,
in this case there are no variables from the right-hand compo-
nent which do not also occur in the left-hand one, ourΓ′

1 andΓ′
2

from the definition of the type inference algorithm (Def. 6.4) are
{x:µ.(ι1 •0 → ϕ3)} and∅ respectively. Thus, we obtain the fol-
lowing typing forxx: 〈 {x: ι2 µ.(ι1 •0 → ϕ3)}, ι2 ϕ3 〉.

A similar procedure then takes place to infer a typing for the
termf(xx), and the reader can easily verify that the typing gener-
ated forλx.f(xx) is the following one:

〈 f :ι4 ι3 ι2 ϕ3 → ι4 ϕ5, ι2 µ.(ι1 •0 → ϕ3) → ι4 ϕ5 〉

Notice that both of the typings we gave in Section 3 can be gen-
erated from this one by different combinations of insertions. For
example, the operation that sends each ofι1, . . . , ι5 to ǫ will pro-
duce the original typing we considered, and the operation that sends
ι1, ι3, . . . , ι5 to ǫ andι2 to • will yield the alternative typing. We
conjecture thatany and all the typings of this term in Nakano’s
original system can be generated from the one returned by oural-
gorithm using type operations and weakening. This would mean
that our algorithm infersprincipal typings, although since our al-
gorithm only unifies up to weak equality it seems clear that typings
would only be principal up to weak equality.

At this point we arrive to where we ran into trouble previously;
remember that type inference without insertion variables failed be-
cause we could not unify the types inferred for the two occurrences
of the subtermλx.f(xx). Having inferred a typing with inser-
tion variables, however, the unification succeeds. Taking afresh
instance for the right-hand occurrence of the subterm, we obtain:

〈Γ1, σ 〉 = 〈 f :ι4 ι3 ι2 ϕ3 → ι4 ϕ5,

ι2 µ.(ι1 •0 → ϕ3) → ι4 ϕ5 〉

〈Γ2, τ 〉 = 〈 f :ι8 ι7 ι6 ϕ8 → ι8 ϕ10,

ι6 µ.(ι5 •0 → ϕ8) → ι8 ϕ10 〉

The unification then proceeds as follows. We show the steps upto
the point at which the approach without insertion variablesfails.
This step is now easily handled because the insertion variable ι6
prefixing the right-hand recursive type is able to ‘consume’the•
prefixing the left-hand recursive type:

Unify
µ
≤ σ , iPush[ι9](τ) → ϕ11

= Unify
µ
≤ ι2 µ.(ι1 •0 → ϕ3) → ι4 ϕ5,

(ι9 ι6 µ.(ι5 •0 → ϕ8) → ι9 ι8 ϕ10) → ϕ11

As before, we contra-variantly unify the domains of the types:

Unify
µ
≤ ι9 ι6 µ.(ι5 • 0 → ϕ8) → ι9 ι8 ϕ10,

ι2 µ.(ι1 •0 → ϕ3)

which requires us to unfold the right-hand type:

Unify
µ
≤ ι9 ι6 µ.(ι5 • 0 → ϕ8) → ι9 ι8 ϕ10,

ι2 ι1 •µ.(ι1 •0 → ϕ3) → ι2 ϕ3

Again, we must contra-variantly unify the domains:

Unify
µ
≤ ι2 ι1 •µ.(ι1 •0 → ϕ3) , ι9 ι6 µ.(ι5 •0 → ϕ8)

We then pair off the insertion variablesι2 andι9 at the head of each
type (an instance of a logical rule), and continue:

Unify
µ
≤ ι1 •µ.(ι1 •0 → ϕ3) , ι6 µ.(ι5 •0 → ϕ8)

This is now the point at which type inference without insertion
variables gets stuck. Here, however, notice that we can unify the
insertion variableι6 with the sequenceι1 • that prefixes the left-
hand type and continue:

Unify
µ
≤ µ.(ι1 •0 → ϕ3) , µ.(ι5 •0 → ϕ8)

We do not show the remaining steps of the unification, howeverthe
reader may verify that it succeeds and results in the following type
for theY combinator:

(ι ι′ ι′′ •ϕ → ι ϕ) → ι ϕ

TheS Combinator

As a further example. consider the combinatorS = λxyz.xz(yz).
The reader may like to verify as an exercise that our algorithm
produces the following type for this term:

(ι5 ι1 ϕ1 → ι5 ι4 ι3 ϕ2 → ι5 ϕ3)

→ (ι3 ι2 ϕ1 → ι3 ϕ2) → ι5 ϕ1 → ι5 ϕ3

Notice, again, that by sending each insertion variableι1, . . . , ι5
to ǫ we obtain the standard Curry (principal) type forS. We can
generate other types forS by applying simple insertions that send
each insertion variable toǫ or •. Each the following types are
obtainable in this way:

(•ϕ1 → ϕ2 → ϕ3) → (ϕ1 → ϕ2) → ϕ1 → ϕ3

(ϕ1 → •ϕ2 → ϕ3) → (ϕ1 → ϕ2) → ϕ1 → ϕ3

(ϕ1 → •ϕ2 → ϕ3) → (•ϕ1 → •ϕ2) → ϕ1 → ϕ3

(•ϕ1 → •ϕ2 → •ϕ3) → (ϕ1 → ϕ2) → •ϕ1 → •ϕ3

This result further bolsters our principality conjecture.It is easily
verified that the four types we have just given, along with the
familiar Curry type, arenot related to one another via subtyping,
i.e. they reside in the same generation in the subtyping partial
order. Neither can any of them be obtained from the Curry type
via substitution. However, they are all obtainable from thetype
returned by our inference procedure via operations (insertions) on
that type!

6.2 Some Comments on Completeness

We have pointed out that because our unification procedure extends
the variant of equality-checking technique that tests for weak equal-
ity (i.e. up to finite unfoldings) of recursive definitions, rather than
strong equality. This means that there are types, that are unifiable
under a strong notion of equality, which our procedure cannot unify.
We have given examples of two such pairs of types in Section 5.4.

It is unclear to us, at this time, whether and exactly how our
technique may be extended to such a strong notion of unification.
In the algorithm for checking strong equality of type definitions,
proof goals (in the form of statements of equality between function
types) are collected as the procedure progresses; then if and when
the same proof goal is encountered again, the equality may be
assumed as an axiom. Using this approach does not seem possible
for unification, which must produce a substitution: since wedo not
what the correct substitution should be on first encountering the
subgoal, what should be returned when the subgoal is encountered
for the second time?

Type Inference for Nakano’s Modality – POPL 2015 11 2014/7/8

Notwithstanding, it remains to be seen whether this is in fact a
significant problem for type inference. Is it the case that our algo-
rithm, when trying to type an application, would actually produce
two types which could only be unified such that they are strongly
equivalent but not weakly so? We have not been able to think of
an example demonstrating this up till now—such an example, if it
exists, would certainly be interesting to consider.

More of a problem for completeness is the fact that we do not
have a rule in our system that unifies a•-prefixed type variable
with a function type (i.e.O? ⊢ •ϕ ≤ σ → τ). There are simple
examples that this is incomplete. Take•ϕ and •ϕ′ → •ϕ′,
which are clearly unifiable with the substitution[ϕ 7→ ϕ′ →
ϕ′]. The fact that our procedure does not do this is an artefact
of the definition of canonical form that we have used: we must
push• modalities innermost. A straightforward example of where
this causes type inference to fail is with the termY(λxy.y(xy))
(also a fixed point combinator). Perhaps this can be overcomeby
some ‘pulling’ operation, that can factorise occurrences of • (and
insertion variables) out of a function type. This is a question for
future research.

7. Conclusions and Future Work
We have presented an extension of Nakano’s original system of
guarded recursive types that consists of insertion variables, a kind
of type constructor. On an operational level, these insertion vari-
ables serve to allow occurrences of the• modality to be introduced
at specific points within types. We have extended the type assign-
ment system so that types with insertion variables can be assigned
to terms. When such a type can be assigned to a term, it issound
to introduce occurrences of• at those locations in the type marked
by an insertion variable. This means that they can actually repre-
sent families of guarded types that may be assigned to term. Thus,
insertion variables aremore than just an operational device; they
constitute an added level of abstraction on top of the raw concept
of the• modality.

We have also described a method for unifying two types in our
extended system, modulo the subtyping relation, and we haveused
this unification procedure to define a type inference algorithm. In
order to develop the unification procedure, we built upon andex-
tended techniques which have previously only been used to de-
cide equality between recursive type definitions. This involved con-
structing a generalisation of the notion of subterm closurewhich
is appropriate for unification. We showed our type inferencealgo-
rithm to be sound, and we demonstrated its operation using typical
and illuminating examples.

There are many potential avenues for future work. Regarding
the system that we have presented, it would be interesting toin-
vestigate to what extent principality of typings holds, andwhether
our inference algorithm does in fact construct them. There is also
the question of extending the notion of unification to gain com-
pleteness. Beyond that, it would also be elucidating to research
the underlying semantic model of insertion variables, and discover
whether there really is a deeper connection with expansion vari-
ables. In terms of applying our results, the obvious question is
whether our techniques can be applied to those systems already de-
fined that make use of Nakano modalities. Beyond that, an applica-
tion mentioned by Nakano himself is the object-oriented paradigm.
Recursive types are the natural descriptions of objects, and so it
seems likely that applying guarded recursion in this setting would
bring great rewards.

References
[1] R. M. Amadio and L. Cardelli. Subtyping Recursive Types.ACM

Trans. Program. Lang. Syst., 15(4):575–631, 1993.

[2] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A Very
Modal Model of a Modern, Major, General Type System. InPOPL,
pages 109–122, 2007.

[3] R. Atkey and C. McBride. Productive Coprogramming with Guarded
Recursion. InICFP, pages 197–208, 2013.

[4] G. Barthe, B. Grégoire, and C. Riba. Type-Based Termination with
Sized Products. InCSL, pages 493–507, 2008.

[5] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring.
First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the
Topos of Trees.Logical Methods in Computer Science, 8(4), 2012.

[6] M. Brandt and F. Henglein. Coinductive Axiomatization of Recursive
Type Equality and Subtyping.Fundam. Inform., 33(4):309–338, 1998.

[7] F. Cardone and M. Coppo. Type Inference with Recursive Types:
Syntax and Semantics.Information and Computation, 92(1):48–80,
1991.

[8] F. Cardone and M. Coppo. Decidability Properties of Recursive Types.
In ICTCS, pages 242–255, 2003.

[9] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-
Holland, Amsterdam, 1958.

[10] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. InPOPL, pages 207–212, 1982.

[11] J. Endrullis, C. Grabmayer, J. W. Klop, and V. van Oostrom. On Equal
µ-terms.Theor. Comput. Sci., 412(28):3175–3202, 2011.

[12] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive Subtyping
Revealed.J. Funct. Program., 12(6):511–548, 2002.

[13] E. Giménez. Structural Recursive Definitions in Type Theory. In
ICALP, pages 397–408, 1998.

[14] J. Y. Girard. Interprtation fonctionnelle et limination des coupures de
l’arithmtique d’ordre suprieur. PhD thesis, Universit Paris VII, 1972.

[15] R. Hindley. The Principal Type-Scheme of an Object in Combinatory
Logic. Transactions of the American Mathematical Society, 146:pp.
29–60, 1969.

[16] W. A. Howard. The Formulas-as-Types Notion of Construction.

[17] A. J. Kfoury and J. B. Wells. Principality and Type Inference for
Intersection Types Using Expansion Variables.Theor. Comput. Sci.,
311(1-3):1–70, 2004.

[18] N. R. Krishnaswami and N. Benton. Ultrametric Semantics of Reac-
tive Programs. InLICS, pages 257–266, 2011.

[19] J. Matthews. Recursive Function Definition over Coinductive Types.
In TPHOLs, pages 73–90, 1999.

[20] D. A. McAllester and K. Arkoudas. Walther Recursion. InCADE,
pages 643–657, 1996.

[21] N. Mendler. Recursive Types and Type Constraints in Second Order
Lambda Calculus. InLICS, pages 30–36. IEEE, 1987.

[22] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978.

[23] R. E. Møgelberg. A Type Theory for Productive Coprogramming Via
Guarded Recursion. InCSL-LICS, 2014.

[24] H. Nakano. A Modality for Recursion. InLICS, pages 255–266, 2000.

[25] H. Nakano. Fixed-Point Logic with the Approximation Modality and
its Kripke Completeness. InTACS, pages 165–182, 2001.

[26] B. C. Pierce.Types and programming languages. MIT Press, 2002.

[27] F. Pottier. A Typed Store-passing Translation for General References.
In POPL, pages 147–158, 2011.

[28] J. C. Reynolds. Towards a theory of type structure. InSymposium on
Programming, pages 408–423, 1974.

[29] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, 1965.

[30] S. van Bakel. Strict Intersection Types for the Lambda Calculus.ACM
Comput. Surv., 43(3):20, 2011.

[31] H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatype Construc-
tors. InPOPL, pages 224–235, 2003.

Type Inference for Nakano’s Modality – POPL 2015 12 2014/7/8

